메뉴 건너뛰기




Volumn 4, Issue 1, 2010, Pages 125-160

A stochastic algorithm for probabilistic independent component analysis

Author keywords

EM algorithm; Image analysis; Independent component analysis; Independent factor analysis; LaTeXe 2e; Statistical modeling; Stochastic approximation

Indexed keywords


EID: 84870276988     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/11-AOAS499     Document Type: Article
Times cited : (10)

References (56)
  • 1
    • 0016355478 scopus 로고    scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (2003). A new look at the statistical model identification. IEEE Trans. Automat. Control 19 716-723.
    • (2003) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 33846207428 scopus 로고    scopus 로고
    • Towards a coherent statistical framework for dense deformable template estimation
    • Allassonnière, S., Amit, Y. and Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 3-29.
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.69 , pp. 3-29
    • Allassonnière, S.1    Amit, Y.2    Trouvé, A.3
  • 3
    • 84870264750 scopus 로고    scopus 로고
    • MAP estimation of statistical deformable templates via nonlinear mixed effects models: Deterministic and stochastic approaches
    • In, (MFCA), New York (X. Pennec and S. Joshi, eds.) Available at
    • Allassonnière, S., Kuhn, E. and Trouvé, A. (2008). MAP estimation of statistical deformable templates via nonlinear mixed effects models: Deterministic and stochastic approaches. In Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA), New York (X. Pennec and S. Joshi, eds.) 80-91. Available at http://www.inria.fr/sophia/asclepios/events/MFCA08/Proceedings/MFCA08_Proceedings.pdf.
    • (2008) Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy , pp. 80-91
    • Allassonnière, S.1    Kuhn, E.2    Trouvé, A.3
  • 4
    • 79951664600 scopus 로고    scopus 로고
    • Stochastic algorithm for Bayesian mixture effect template estimation
    • Allassonnière, S. and Kuhn, E. (2010). Stochastic algorithm for Bayesian mixture effect template estimation. ESAIM Probab. Stat. 14 382-408.
    • (2010) ESAIM Probab. Stat , vol.14 , pp. 382-408
    • Allassonnière, S.1    Kuhn, E.2
  • 5
    • 77957599284 scopus 로고    scopus 로고
    • Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    • Allassonnière, S., Kuhn, E. and Trouvé, A. (2010). Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study. Bernoulli 16 641-678.
    • (2010) Bernoulli , vol.16 , pp. 641-678
    • Allassonnière, S.1    Kuhn, E.2    Trouvé, A.3
  • 7
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • Andrieu, C., Moulines, É. and Priouret, P. (2005). Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 283-312.
    • (2005) SIAM J. Control Optim , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, E.2    Priouret, P.3
  • 8
    • 0036648367 scopus 로고    scopus 로고
    • Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation
    • Arie, Y. (2002). Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process 50 1545-1553.
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 1545-1553
    • Arie, Y.1
  • 9
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999). Independent factor analysis. Neural Comput. 11 803-851.
    • (1999) Neural Comput , vol.11 , pp. 803-851
    • Attias, H.1
  • 12
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell, A. J. and Sejnowski, T. J. (1995a). An information maximisation approach to blind separation and blind deconvolution. Neural Comput. 7 1004-1034.
    • (1995) Neural Comput , vol.7 , pp. 1004-1034
    • Bell, A.J.1    Sejnowski, T.J.2
  • 13
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell, A. J. and Sejnowski, T. J. (1995b). An information maximisation approach to blind separation and blind deconvolution. Neural Comput. 7, 6 1129-1159.
    • (1995) Neural Comput. 7 , vol.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 16
    • 0035172708 scopus 로고    scopus 로고
    • fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis
    • Calhoun, V., Adali, T. and McGinty, V. (2001). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. NeuroImage 14 1080-1088.
    • (2001) NeuroImage , vol.14 , pp. 1080-1088
    • Calhoun, V.1    Adali, T.2    McGinty, V.3
  • 17
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • Calhoun, V. D., Adali, T., Pearlson, G. D. and Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14 140-151.
    • (2001) Hum. Brain Mapp , vol.14 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 18
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput. 11 157-192.
    • (1999) Neural Comput , vol.11 , pp. 157-192
    • Cardoso, J.-F.1
  • 19
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comp. Statis. Quaterly 2 73-82.
    • (1985) Comp. Statis. Quaterly , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 20
    • 60649091904 scopus 로고    scopus 로고
    • An application to railway device diagnosis. In Proc. of the International Conference on Machine Learning and Applications IEEE, Washington, DC
    • Côme, E., Cherfi, Z., Oukhellou, L. and Aknin, P. (2008). Semi-supervised IFA with prior knowledge on the mixing process. An application to railway device diagnosis. In Proc. of the International Conference on Machine Learning and Applications 415-420. IEEE, Washington, DC.
    • (2008) Semi-supervised IFA with prior knowledge on the mixing process , pp. 415-420
    • Côme, E.1    Cherfi, Z.2    Oukhellou, L.3    Aknin, P.4
  • 21
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 94-128.
    • (1999) Ann. Statist , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 25
    • 14544274150 scopus 로고    scopus 로고
    • Bilinear sparse coding for invariant vision
    • Grimes, D. B. and Rao, R. P. N. (2005). Bilinear sparse coding for invariant vision. Neural Comput. 17 47-73.
    • (2005) Neural Comput , vol.17 , pp. 47-73
    • Grimes, D.B.1    Rao, R.P.N.2
  • 27
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • Hyvarinen, A. (1999). Survey on independent component analysis. Neural Computing Surveys 2 94-128.
    • (1999) Neural Computing Surveys , vol.2 , pp. 94-128
    • Hyvarinen, A.1
  • 28
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Comput. 9 1483-1492.
    • (1997) Neural Comput , vol.9 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 30
    • 13444249563 scopus 로고    scopus 로고
    • Coupling a stochastic approximation version of EM with an MCMC procedure
    • (electronic)
    • Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM Probab. Stat. 8 115-131 (electronic).
    • (2004) ESAIM Probab. Stat , vol.8 , pp. 115-131
    • Kuhn, E.1    Lavielle, M.2
  • 32
    • 33645120909 scopus 로고    scopus 로고
    • International Ser. Operations Res. Management Sci. 84. Springer, New York
    • Li, D. and Sun, X. (2006). Nonlinear Integer Programming. International Ser. Operations Res. Management Sci. 84. Springer, New York.
    • (2006) Nonlinear Integer Programming
    • Li, D.1    Sun, X.2
  • 33
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister, W. (2002). Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 51-60.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 34
    • 0041523978 scopus 로고    scopus 로고
    • Independent component analysis of Gabor features for face recognition
    • Liu, C. and Wechsler, H. (2003). Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Netw. 4 919-928.
    • (2003) IEEE Trans. Neural Netw , vol.4 , pp. 919-928
    • Liu, C.1    Wechsler, H.2
  • 35
    • 0030931604 scopus 로고    scopus 로고
    • Blind separation of auditory event-related brain responses into independent components
    • Makeig, S. and Jung, T. (1997). Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 94 10979-10984.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 10979-10984
    • Makeig, S.1    Jung, T.2
  • 36
    • 65749097073 scopus 로고    scopus 로고
    • Variable selection in model-based clustering: A general variable role modeling
    • Maugis, C., Celeux, G. and Martin-Magniette, M. L. (2009). Variable selection in model-based clustering: A general variable role modeling. Comput. Statist. Data Anal. 53 3872-3882.
    • (2009) Comput. Statist. Data Anal , vol.53 , pp. 3872-3882
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.L.3
  • 37
    • 0036403673 scopus 로고    scopus 로고
    • On the metrics and Euler-Lagrange equations of computational anatomy
    • Miller, M. I., Trouve, A. and Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4 375-405.
    • (2002) Annu. Rev. Biomed. Eng , vol.4 , pp. 375-405
    • Miller, M.I.1    Trouve, A.2    Younes, L.3
  • 42
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A. and Field, D. J. (1996a). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 44
    • 4644240926 scopus 로고    scopus 로고
    • Metabolite fingerprinting: Detecting biological features by independent component analysis
    • Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. and Selbig, J. (2004). Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics 20 2447-2454.
    • (2004) Bioinformatics , vol.20 , pp. 2447-2454
    • Scholz, M.1    Gatzek, S.2    Sterling, A.3    Fiehn, O.4    Selbig, J.5
  • 45
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 47
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • Tenenbaum, J. B. and Freeman, W. T. (2002). Separating style and content with bilinear models. Neural Comput. 12 1247-1283.
    • (2002) Neural Comput , vol.12 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 48
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 49
    • 0032115435 scopus 로고    scopus 로고
    • Diffeomorphism groups and pattern matching in image analysis
    • Trouvé, A. (1998). Diffeomorphism groups and pattern matching in image analysis. Int. J. Comput. Vis. 28 213-221.
    • (1998) Int. J. Comput. Vis , vol.28 , pp. 213-221
    • Trouvé, A.1
  • 52
    • 0042167964 scopus 로고    scopus 로고
    • In Proc. of the Second International Workshop on Independent Component Analysis and Blind Signal Separation, ICA 2000, Helsinki, Finland
    • Valpola Lappalainen, H. and Pajunen, P. (2000). Fast algorithms for Bayesian independent component analysis. In Proc. of the Second International Workshop on Independent Component Analysis and Blind Signal Separation, ICA 2000, Helsinki, Finland 233-237.
    • (2000) Fast algorithms for Bayesian independent component analysis , pp. 233-237
    • Valpola Lappalainen, H.1    Pajunen, P.2
  • 53
    • 77950528347 scopus 로고    scopus 로고
    • A group model for stable multi-subject ICA on fMRI datasets
    • Varoquaux, G., Sadaghini, S., Poline, J. B. and Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. NeuroImage 51 288-299.
    • (2010) NeuroImage , vol.51 , pp. 288-299
    • Varoquaux, G.1    Sadaghini, S.2    Poline, J.B.3    Thirion, B.4
  • 55
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Amer. Statist. Assoc. 85 699-704.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2
  • 56
    • 0035292754 scopus 로고    scopus 로고
    • A constrained EM algorithm for independent component analysis
    • Welling, M. and Weber, M. (2001). A constrained EM algorithm for independent component analysis. Neural Comput. 13 677-689.
    • (2001) Neural Comput , vol.13 , pp. 677-689
    • Welling, M.1    Weber, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.