메뉴 건너뛰기




Volumn 73, Issue 16-18, 2010, Pages 3191-3199

Constructive hidden nodes selection of extreme learning machine for regression

Author keywords

Constructive method; Error minimized extreme learning machine; Extreme learning machine; Incremental extreme learning machine

Indexed keywords

CONSTRUCTIVE METHODS; EMPIRICAL STUDIES; EXTREME LEARNING MACHINE; HIDDEN NODES; INCREMENTAL EXTREME LEARNING MACHINE; LINEAR REGRESSION MODELS; MINIMUM VALUE; MODEL SELECTION; NETWORK STRUCTURES; NON-LINEARITY; OPTIMAL NUMBER; REGRESSION APPLICATIONS; RISK ESTIMATION;

EID: 78650310346     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.05.022     Document Type: Article
Times cited : (138)

References (29)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 2
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of International Joint Conference on Neural Networks, IJCNN'04, Budapest, Hungary, July
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of International Joint Conference on Neural Networks, IJCNN'04, vol. 2, Budapest, Hungary, 25-29 July 2004, pp. 985-990.
    • (2004) , vol.2 , Issue.25-29 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 3
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 4
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3060-3068.
    • (2008) Neurocomputing , vol.71 , pp. 3060-3068
    • Huang, G.-B.1    Chen, L.2
  • 5
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 7
  • 8
    • 78650311245 scopus 로고
    • Gal: networks that grow when they learn and shrink when they forget, International Computer Science Institute, TR 91-032, USA
    • E. Alpaydin, Gal: networks that grow when they learn and shrink when they forget, International Computer Science Institute, TR 91-032, USA, 1991.
    • (1991)
    • Alpaydin, E.1
  • 9
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • Rong H.-J., Ong Y.-S., Tan A.-H., Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008, 72:359-366.
    • (2008) Neurocomputing , vol.72 , pp. 359-366
    • Rong, H.-J.1    Ong, Y.-S.2    Tan, A.-H.3    Zhu, Z.4
  • 11
    • 33646231022 scopus 로고    scopus 로고
    • Multiresponse sparse regression with application to multidimensional scaling, in: Proceedings in Artificial Neural Networks: Fornal Models and Their Applications, ICANN 2005
    • T. Simila, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, in: Proceedings in Artificial Neural Networks: Fornal Models and Their Applications, ICANN 2005, vol. 3697, 2005, pp. 97-102.
    • (2005) , vol.3697 , pp. 97-102
    • Simila, T.1    Tikka, J.2
  • 12
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithm for structure learning in feedforward neural networks for regression problems
    • Kwok T.-Y., Yeung D.-Y. Constructive algorithm for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 1997, 8(3):630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 13
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 2009, 20(8):1352-1357.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 14
    • 78650305482 scopus 로고    scopus 로고
    • UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine
    • A. Asuncion, D. Newman, UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine, 2007. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 15
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Transactions on Neural Networks 2003, 14(2):274-281.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.-B.1
  • 19
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking R.R. The analysis and selection of variables in linear regression. Biometrics 1976, 32:1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 20
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., Luo W. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control 1989, 50(5):1873-1896.
    • (1989) International Journal of Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 21
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 1991, 2(2):302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 22
    • 0029343956 scopus 로고
    • Fast orthogonal least squares algorithm for efficient subset model selection
    • Chen S., Wigger J. Fast orthogonal least squares algorithm for efficient subset model selection. IEEE Transactions on Signal Processing 1995, 43(7):1713-1715.
    • (1995) IEEE Transactions on Signal Processing , vol.43 , Issue.7 , pp. 1713-1715
    • Chen, S.1    Wigger, J.2
  • 23
    • 0030192825 scopus 로고    scopus 로고
    • Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    • Zhu Q.M., Billings S.A. Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. International Journal of Control 1996, 64(5):871-886.
    • (1996) International Journal of Control , vol.64 , Issue.5 , pp. 871-886
    • Zhu, Q.M.1    Billings, S.A.2
  • 24
    • 0029733132 scopus 로고    scopus 로고
    • On the efficiency of the orthogonal least squares training method for radial basis function networks
    • Sherstinsky A., Picard R.W. On the efficiency of the orthogonal least squares training method for radial basis function networks. IEEE Transactions on Neural Networks 1996, 7(1):195-200.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 195-200
    • Sherstinsky, A.1    Picard, R.W.2
  • 26
    • 78650304276 scopus 로고    scopus 로고
    • Least angle regression: discussion
    • Turlach B.A. Least angle regression: discussion. Annals of Statistics 2004, 32(2):481-490.
    • (2004) Annals of Statistics , vol.32 , Issue.2 , pp. 481-490
    • Turlach, B.A.1
  • 29
    • 78650311288 scopus 로고    scopus 로고
    • Fast construction of single hidden layer feedforward networks, in: G. Rozenberg, T.H.W. Bäck, J.N. Kok, (Eds.), Handbook of Natural Computing, Springer, April ISBN: 978-3-540-92909-3
    • K. Li, G.-B. Huang, S.S. Ge, Fast construction of single hidden layer feedforward networks, in: G. Rozenberg, T.H.W. Bäck, J.N. Kok, (Eds.), Handbook of Natural Computing, Springer, April 2010, ISBN: 978-3-540-92909-3.
    • (2010)
    • Li, K.1    Huang, G.-B.2    Ge, S.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.