메뉴 건너뛰기




Volumn 16, Issue 8, 2012, Pages 1521-1531

Supervised quality assessment of medical image registration: Application to intra-patient CT lung registration

Author keywords

Image registration quality; Non rigid registration; Pattern recognition; Registration error; Supervised learning

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION PERFORMANCE; IMAGE FEATURES; LOCAL ALIGNMENT; MEDICAL IMAGE REGISTRATION; NON-RIGID REGISTRATION ALGORITHMS; NONRIGID REGISTRATION; OPTIMAL SUBSETS; POINT CORRESPONDENCE; QUALITY ASSESSMENT; REGISTRATION ERROR; STATISTICAL IMAGES; TRAINING AND TESTING;

EID: 84870057361     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2012.06.010     Document Type: Article
Times cited : (44)

References (53)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y., Geman D. Shape quantization and recognition with randomized trees. Neural Computation 1997, 9:1545-1588.
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 1999, 36:105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30:1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
  • 6
    • 84870054372 scopus 로고    scopus 로고
    • Manual on setting up, using, and understanding random forests v3.1.
    • Breiman, L., 2002. Manual on setting up, using, and understanding random forests v3.1.
    • (2002)
    • Breiman, L.1
  • 12
    • 68649110911 scopus 로고    scopus 로고
    • Evaluation of brain MRI alignment with the robust hausdorff distance measures
    • Springer, International Symposium on Visual Computing
    • Fedorov A., Billet E., Prastawa M., Gerig G., Radmanesh A., Warfield S.K., Kikinis R., Chrisochoides N. Evaluation of brain MRI alignment with the robust hausdorff distance measures. LNCS 2008, vol. 5358:594-603. Springer.
    • (2008) LNCS , vol.5358 , pp. 594-603
    • Fedorov, A.1    Billet, E.2    Prastawa, M.3    Gerig, G.4    Radmanesh, A.5    Warfield, S.K.6    Kikinis, R.7    Chrisochoides, N.8
  • 13
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 1997, 55:119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley J.A., McNeil B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148:839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 20
  • 23
    • 84870058402 scopus 로고    scopus 로고
    • A framework for incorporating class priors into discriminative classification
    • Springer, T. Ho, D. Cheung, H. Liu (Eds.)
    • Jin R., Liu Y. A framework for incorporating class priors into discriminative classification. Advances in Knowledge Discovery and Data Mining 2005, 401-412. Springer. T. Ho, D. Cheung, H. Liu (Eds.).
    • (2005) Advances in Knowledge Discovery and Data Mining , pp. 401-412
    • Jin, R.1    Liu, Y.2
  • 25
    • 36348985858 scopus 로고    scopus 로고
    • Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines
    • Klein S., Staring M., Pluim J.P.W. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. Transactions on Medical Imaging 2007, 16:2879-2890.
    • (2007) Transactions on Medical Imaging , vol.16 , pp. 2879-2890
    • Klein, S.1    Staring, M.2    Pluim, J.P.W.3
  • 27
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufman, n
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. 14th International Joint Conference on Artificial Intelligence 1995, 1137-1143. Morgan Kaufman, n.
    • (1995) 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 79955962699 scopus 로고    scopus 로고
    • Combining bagging, boosting, rotation forest and random subspace methods
    • Kotsiantis S. Combining bagging, boosting, rotation forest and random subspace methods. Artificial Intelligence Review 2011, 35:223-240.
    • (2011) Artificial Intelligence Review , vol.35 , pp. 223-240
    • Kotsiantis, S.1
  • 31
    • 0032785812 scopus 로고    scopus 로고
    • A survey of hierarchical non-linear medical image registration
    • Lester H., Arridge S. A survey of hierarchical non-linear medical image registration. Pattern Recognition 1999, 32:129-149.
    • (1999) Pattern Recognition , vol.32 , pp. 129-149
    • Lester, H.1    Arridge, S.2
  • 32
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A., Wiener M. Classification and regression by random forest. R News 2002, 2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 33
    • 0000646926 scopus 로고
    • Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction
    • Lindeberg T. Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. Journal of Mathematical Imaging and Vision 1993, 3:349-376.
    • (1993) Journal of Mathematical Imaging and Vision , vol.3 , pp. 349-376
    • Lindeberg, T.1
  • 36
    • 45149106672 scopus 로고    scopus 로고
    • An integrated analysis concept for errors in image registration
    • Möller B., Posch S. An integrated analysis concept for errors in image registration. Pattern Recognition and Image Analysis 2008, 18:201-206.
    • (2008) Pattern Recognition and Image Analysis , vol.18 , pp. 201-206
    • Möller, B.1    Posch, S.2
  • 38
  • 40
  • 43
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 2003, 3:1371-1382.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 44
    • 67649625670 scopus 로고    scopus 로고
    • Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection
    • van Rikxoort E., de Hoop B., Viergever M., Prokop M., van Ginneken B. Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Medical Physics 2009, 36:2934-2947.
    • (2009) Medical Physics , vol.36 , pp. 2934-2947
    • van Rikxoort, E.1    de Hoop, B.2    Viergever, M.3    Prokop, M.4    van Ginneken, B.5
  • 45
    • 0000627958 scopus 로고
    • The box-cox transformation technique: a review
    • Sakia R.M. The box-cox transformation technique: a review. The Statistician 1992, 41:169.
    • (1992) The Statistician , vol.41 , pp. 169
    • Sakia, R.M.1
  • 47
    • 79551689252 scopus 로고    scopus 로고
    • Location registration and recognition (LRR) for longitudinal evaluation of corresponding regions in CT volumes
    • Springer
    • Sofka M., Stewart C.V. Location registration and recognition (LRR) for longitudinal evaluation of corresponding regions in CT volumes. Medical Image Computing and Computer-Assisted Intervention 2008, 989-997. Springer.
    • (2008) Medical Image Computing and Computer-Assisted Intervention , pp. 989-997
    • Sofka, M.1    Stewart, C.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.