메뉴 건너뛰기




Volumn 35, Issue 3, 2011, Pages 223-240

Combining bagging, boosting, rotation forest and random subspace methods

Author keywords

Data mining; Ensembles of classifiers; Machine learning; Pattern recognition

Indexed keywords

BENCHMARK DATASETS; COMBINING METHOD; ENSEMBLE METHODS; ENSEMBLES OF CLASSIFIERS; MACHINE LEARNING; NOISE FREE DATA; RANDOM SUBSPACE METHOD; RESAMPLING;

EID: 79955962699     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-010-9192-8     Document Type: Article
Times cited : (125)

References (39)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36:105-139
    • (1999) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0043272902 scopus 로고    scopus 로고
    • Memory-based morphological analysis
    • University of Maryland
    • Bosch A, Daelemans W (1999) Memory-based morphological analysis. In: Proceedings of 37th annual meeting of the ACL. University of Maryland, pp 285-292 (http://ilk.kub.nl/~antalb/ltuia/week10.html)
    • (1999) Proceedings of 37th Annual Meeting of the ACL , pp. 285-292
    • Bosch, A.1    Daelemans, W.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(3):123-140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1):5-32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • Bryll R, Gutierrez-Osuna R, Quek F (2003) Attribute bagging: improving accuracy of classifier ensemble by using random feature subsets. Pattern Recognit 36:1291-1302 (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 6
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • DOI 10.1214/aos/1031689014
    • Bühlman P, Yu B (2002) Analyzing bagging. Ann Stat 30:927-961 (Pubitemid 37095335)
    • (2002) Annals of Statistics , vol.30 , Issue.4 , pp. 927-961
    • Buhlmann, P.1    Yu, B.2
  • 7
    • 33746171809 scopus 로고    scopus 로고
    • Observations on bagging
    • Buja WS (2006) Observations on bagging. Statistica Sinica 16:323-351
    • (2006) Statistica Sinica , vol.16 , pp. 323-351
    • Buja, W.S.1
  • 8
    • 51449088939 scopus 로고    scopus 로고
    • A weighted subspace approach for improving bagging performance
    • Cai Q-T, Peng C-Y, Zhang C-S (2008) A weighted subspace approach for improving bagging performance. In: IEEE ICASSP, pp 3341-3344
    • (2008) IEEE ICASSP , pp. 3341-3344
    • Cai, Q.-T.1    Peng, C.-Y.2    Zhang, C.-S.3
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40:139-157
    • (2000) Mach Learn , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 10
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Kittler J, Roli F (eds). LNCS
    • Dietterich TG (2001) Ensemble methods in machine learning. In: Kittler J, Roli F (eds) Multiple classifier systems. LNCS, vol 1857, pp 1-15
    • (2001) Multiple Classifier Systems , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 11
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classiier under zero-one loss. Mach Learn 29:103-130 (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 13
    • 79955641166 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Irvine, CA, University of California
    • Frank A, Asuncion A (2010) UCI machine learning repository [http://www.archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science
    • (2010) School of Information and Computer Science
    • Frank, A.1    Asuncion, A.2
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view ofboosting
    • Freidman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view ofboosting. Ann Stat 28:307-337
    • (2000) Ann Stat , vol.28 , pp. 307-337
    • Freidman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund Y, Robert E Schapire (1996) Experiments with a new boosting algorithm. In: Proceedings of ICML'96, pp 148-156
    • (1996) Proceedings of ICML'96 , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119-139 (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 26444613298 scopus 로고    scopus 로고
    • Dynamics of variance reduction in bagging and other techniques based on randomisation
    • Multiple Classifier Systems: 6th International Workshop, MCS 2005. Proceedings
    • Fumera G, Roli F, Serrau A (2005) Dynamics of variance reduction in bagging and other techniques based on randomisation. MCS 2005, LNCS vol 3541, pp 316-325 (Pubitemid 41422630)
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 316-325
    • Fumera, G.1    Roli, F.2    Serrau, A.3
  • 19
    • 45349093205 scopus 로고    scopus 로고
    • A theoretical analysis of bagging as a linear combination of classiiers
    • Fumera G, Roli F, Serrau A (2008) A theoretical analysis of bagging as a linear combination of classiiers. IEEE Trans Pattern Anal Mach Intell 30(7):1293-1299
    • (2008) IEEE Trans Pattern Anal Mach Intell , vol.30 , Issue.7 , pp. 1293-1299
    • Fumera, G.1    Roli, F.2    Serrau, A.3
  • 21
    • 3543107923 scopus 로고    scopus 로고
    • Bagging equalizes influence
    • Grandvalet Y (2004) Bagging equalizes influence. Mach Learn 55:251-270
    • (2004) Mach Learn , vol.55 , pp. 251-270
    • Grandvalet, Y.1
  • 23
    • 8344235939 scopus 로고    scopus 로고
    • Preventing Student Dropout in Distance Learning Using Machine Learning Techniques
    • Knowledge-Based Intelligent Information and Engineering Systems 7th International Conference, KES 2003 Oxford, UK, September 3-5, 2003 Proceedings, Part II
    • Kotsiantis S, Pierrakeas C, Pintelas P (2003) Preventing student dropout in distance learning systems using machine learning techniques. In: Proceedings of 7th international conference on knowledge-based intelligent information and engineering systems (KES), Oxford, Sept. 3-5, Lecture notes series, vol 2774. Springer, pp 267-274 (Pubitemid 37142734)
    • (2003) Lecture Notes in Computer Science , Issue.2774 , pp. 267-274
    • Kotsiantis, S.B.1    Pierrakeas, C.J.2    Pintelas, P.E.3
  • 24
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classiiers
    • Kuncheva LI, Skurichina M, Duin RPW (2002) An experimental study on diversity for bagging and boosting with linear classiiers. Inf Fusion 3:245-258
    • (2002) Inf Fusion , vol.3 , pp. 245-258
    • Kuncheva, L.I.1    Skurichina, M.2    Rpw, D.3
  • 26
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples
    • Acapulco, Mexico, August 2003
    • Melville P, Mooney R (2003) Constructing diverse classifier ensembles using artificial training examples. In: Proceedings of IJCAI-2003, pp 505-510, Acapulco, Mexico, August 2003
    • (2003) Proceedings of IJCAI-2003 , pp. 505-510
    • Melville, P.1    Mooney, R.2
  • 27
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multi-disciplinary survey
    • Murthy (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Discov 2:345-389 (Pubitemid 128695483)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 345-389
    • Murthy, S.K.1
  • 29
    • 38049036817 scopus 로고    scopus 로고
    • Combining bagging and random subspaces to create better ensembles
    • Panov P, Dzeroski S (2007) Combining bagging and random subspaces to create better ensembles, IDA 2007, LNCS 4723, pp 118-129
    • (2007) IDA 2007, LNCS 4723 , pp. 118-129
    • Panov, P.1    Dzeroski, S.2
  • 30
    • 27244449186 scopus 로고    scopus 로고
    • Boosting feature selection
    • Pattern Recognition and Data Mining: Third International Conference on Advances in Pattern Recognition, ICAPR 2005. Proceedings
    • Redpath DB, Lebart K (2005) Boosting feature selection. In: The third international conference on advances in pattern recognition, Bath, UK, Springer, Berlin, pp 305-314 (Pubitemid 41520570)
    • (2005) Lecture Notes in Computer Science , vol.3686 , Issue.PART I , pp. 305-314
    • Redpath, D.B.1    Lebart, K.2
  • 32
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classiiers: Pitfalls to avoid and a recommended approach
    • Salzberg S (1997) On comparing classiiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1:317-328
    • (1997) Data Min Knowl Discov , vol.1 , pp. 317-328
    • Salzberg, S.1
  • 33
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26:1651-1686 (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 34
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • Schapire RE, Singer Y (1999) Improved boosting algorithms using conidence-rated predictions. Mach Learn 37:297-336 (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 35
    • 58349119392 scopus 로고    scopus 로고
    • Bagging random subspace method and biding
    • Shirai S, Kudo M, Nakamura A (2008) Bagging, random subspace method and biding. SSPR&SPR 2008, LNCS vol 5342, pp 801-810
    • (2008) SSPR&SPR 2008, LNCS , vol.5342 , pp. 801-810
    • Shirai, S.1    Kudo, M.2    Nakamura, A.3
  • 36
    • 38049016947 scopus 로고    scopus 로고
    • Combining answers of sub-classiiers in the bagging-feature ensembles
    • Stefanowski J (2007) Combining answers of sub-classiiers in the bagging-feature ensembles, RSEISP 2007, LNAI vol 4585, pp 574-583
    • (2007) RSEISP 2007, LNAI , vol.4585 , pp. 574-583
    • Stefanowski, J.1
  • 38
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb GI (2000) MultiBoosting: a technique for combining boosting and wagging. Mach Learn 40:159-196
    • (2000) Mach Learn , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 39
    • 25644448724 scopus 로고    scopus 로고
    • Feature combination using boosting
    • DOI 10.1016/j.patrec.2005.03.029, PII S016786550500111X
    • Yin X-C, Liu C-P, Zhi H (2005) Feature combination using boosting. Pattern Recognit Lett 26:2195-2205 (Pubitemid 41383619)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.14 , pp. 2195-2205
    • Yin, X.-C.1    Liu, C.-P.2    Han, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.