메뉴 건너뛰기




Volumn 13, Issue 1, 2013, Pages 372-389

Alternative rule induction methods based on incremental object using rough set theory

Author keywords

Incremental algorithm; Incremental object; Mining methods and algorithms; Rough set theory; Rule induction

Indexed keywords

CLASSIFICATION RULES; COMPUTATION TIME; INCREMENTAL ALGORITHM; INCREMENTAL APPROACH; INCREMENTAL OBJECT; LARGE DATABASE; MATHEMATICAL APPROACH; MINING METHODS AND ALGORITHMS; ROUGH SET; RULE INDUCTION; RULE INDUCTION METHODS; RULE SET; STRENGTH INDEXES;

EID: 84869433390     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.08.042     Document Type: Article
Times cited : (40)

References (49)
  • 3
    • 77649339941 scopus 로고    scopus 로고
    • A Dominance-based Rough Set Approach to customer behavior in the airline market
    • J.J.H. Liou, and G.-H. Tzeng A Dominance-based Rough Set Approach to customer behavior in the airline market Information Sciences 180 2010 2230 2238
    • (2010) Information Sciences , vol.180 , pp. 2230-2238
    • Liou, J.J.H.1    Tzeng, G.-H.2
  • 4
    • 9944250506 scopus 로고    scopus 로고
    • Rule-based life cycle impact assessment using modified rough set induction methodology
    • R.R. Tan Rule-based life cycle impact assessment using modified rough set induction methodology Environmental Modelling and Software 20 2005 509 513
    • (2005) Environmental Modelling and Software , vol.20 , pp. 509-513
    • Tan, R.R.1
  • 6
    • 84856017775 scopus 로고    scopus 로고
    • A new weighted rough set framework based classification for Egyptian NeoNatal Jaundice
    • H.S. Own, and A. Abraham A new weighted rough set framework based classification for Egyptian NeoNatal Jaundice Applied Soft Computing 12 2012 999 1005
    • (2012) Applied Soft Computing , vol.12 , pp. 999-1005
    • Own, H.S.1    Abraham, A.2
  • 7
  • 8
    • 33748195464 scopus 로고    scopus 로고
    • Rough set theory in analyzing the attributes of combination values for the insurance market
    • J.-Y. Shyng, F.-K. Wang, G.-H. Tzeng, and K.-S. Wu Rough set theory in analyzing the attributes of combination values for the insurance market Expert Systems with Applications 32 2007 56 64
    • (2007) Expert Systems with Applications , vol.32 , pp. 56-64
    • Shyng, J.-Y.1    Wang, F.-K.2    Tzeng, G.-H.3    Wu, K.-S.4
  • 10
    • 79151475446 scopus 로고    scopus 로고
    • Autonomous rule induction from data with tolerances in customer relationship management
    • T.-L. Tseng, C.-C. Huang, and Y.-N. Fan Autonomous rule induction from data with tolerances in customer relationship management Expert Systems with Applications 38 2011 4889 4900
    • (2011) Expert Systems with Applications , vol.38 , pp. 4889-4900
    • Tseng, T.-L.1    Huang, C.-C.2    Fan, Y.-N.3
  • 12
    • 78649779129 scopus 로고    scopus 로고
    • The incremental method for fast computing the rough fuzzy approximations
    • Y. Cheng The incremental method for fast computing the rough fuzzy approximations Data and Knowledge Engineering 70 2011 84 100
    • (2011) Data and Knowledge Engineering , vol.70 , pp. 84-100
    • Cheng, Y.1
  • 15
    • 38049075157 scopus 로고    scopus 로고
    • Incremental learning and evaluation of structures of rough decision tables
    • W. Ziarko Incremental learning and evaluation of structures of rough decision tables Transactions on Rough Sets Iv 3700 2005 162 177
    • (2005) Transactions on Rough Sets Iv , vol.3700 , pp. 162-177
    • Ziarko, W.1
  • 20
    • 78751617552 scopus 로고    scopus 로고
    • A rough set approach to multiple dataset analysis
    • K. Kaneiwa A rough set approach to multiple dataset analysis Applied Soft Computing 11 2011 2538 2547
    • (2011) Applied Soft Computing , vol.11 , pp. 2538-2547
    • Kaneiwa, K.1
  • 23
    • 0033083823 scopus 로고    scopus 로고
    • An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems
    • I. Jagielska, C. Matthews, and T. Whitfort An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems Neurocomputing 24 1999 37 54
    • (1999) Neurocomputing , vol.24 , pp. 37-54
    • Jagielska, I.1    Matthews, C.2    Whitfort, T.3
  • 24
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information systems
    • M. Kryszkiewicz Rough set approach to incomplete information systems Information Sciences 112 1998 39 49
    • (1998) Information Sciences , vol.112 , pp. 39-49
    • Kryszkiewicz, M.1
  • 25
    • 0003397496 scopus 로고
    • Rough sets theoretical aspects of reasoning about data
    • Kluwer Academic Publishers Boston
    • Z. Pawlak Rough sets theoretical aspects of reasoning about data Rough Sets: Theoretical Aspects of Reasoning about Data 1991 Kluwer Academic Publishers Boston
    • (1991) Rough Sets: Theoretical Aspects of Reasoning about Data
    • Pawlak, Z.1
  • 26
    • 0032291072 scopus 로고    scopus 로고
    • Automated extraction of medical expert system rules from clinical databases based on rough set theory
    • S. Tsumoto Automated extraction of medical expert system rules from clinical databases based on rough set theory Information Sciences 112 1998 67 84
    • (1998) Information Sciences , vol.112 , pp. 67-84
    • Tsumoto, S.1
  • 30
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • D. Ślezak Approximate entropy reducts Fundamental Information 53 2002 365 390
    • (2002) Fundamental Information , vol.53 , pp. 365-390
    • Ślezak, D.1
  • 32
    • 34250357173 scopus 로고    scopus 로고
    • A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets
    • D. Chen, C. Wang, and Q. Hu A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets Information Sciences 177 2007 3500 3518
    • (2007) Information Sciences , vol.177 , pp. 3500-3518
    • Chen, D.1    Wang, C.2    Hu, Q.3
  • 33
    • 33746881122 scopus 로고    scopus 로고
    • Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma
    • X. Wang, J. Yang, R. Jensen, and X. Liu Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma Computer Methods and Programs in Biomedicine 83 2006 147 156
    • (2006) Computer Methods and Programs in Biomedicine , vol.83 , pp. 147-156
    • Wang, X.1    Yang, J.2    Jensen, R.3    Liu, X.4
  • 34
    • 67349083883 scopus 로고    scopus 로고
    • Financial time-series analysis with rough sets
    • J. Yao, and J.P. Herbert Financial time-series analysis with rough sets Applied Soft Computing 9 2009 1000 1007
    • (2009) Applied Soft Computing , vol.9 , pp. 1000-1007
    • Yao, J.1    Herbert, J.P.2
  • 36
    • 50049131795 scopus 로고    scopus 로고
    • Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets
    • H.J. Teoh, C.-H. Cheng, H.-H. Chu, and J.-S. Chen Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets Data and Knowledge Engineering 67 2008 103 117
    • (2008) Data and Knowledge Engineering , vol.67 , pp. 103-117
    • Teoh, H.J.1    Cheng, C.-H.2    Chu, H.-H.3    Chen, J.-S.4
  • 43
    • 84898025467 scopus 로고    scopus 로고
    • Incremental learning of locally orthogonal subspaces for set-based object recognition
    • M. Chantler, B. Fisher, M. Trucco, BMVA, Press Edinburgh, UK pp. 58.51-58.10
    • T.-K. Kim, J. Kittler, and R. Cipolla Incremental learning of locally orthogonal subspaces for set-based object recognition M. Chantler, B. Fisher, M. Trucco, Proceedings of the British Machine Vision Conference 2006 BMVA, Press Edinburgh, UK pp. 58.51-58.10
    • (2006) Proceedings of the British Machine Vision Conference
    • Kim, T.-K.1    Kittler, J.2    Cipolla, R.3
  • 44
    • 44449123528 scopus 로고    scopus 로고
    • Question classification with incremental rule learning algorithm based on rough set
    • P. Li, X.-L. Wang, and Y. Guan Question classification with incremental rule learning algorithm based on rough set Journal of Electronics and Information Technology 30 2008 1127 1130
    • (2008) Journal of Electronics and Information Technology , vol.30 , pp. 1127-1130
    • Li, P.1    Wang, X.-L.2    Guan, Y.3
  • 48
    • 0029307419 scopus 로고
    • Data-based acquisition and incremental modification of classification rules
    • N. Shan, and W. Ziarko Data-based acquisition and incremental modification of classification rules Computational Intelligence 11 1995 357 370
    • (1995) Computational Intelligence , vol.11 , pp. 357-370
    • Shan, N.1    Ziarko, W.2
  • 49
    • 0034138544 scopus 로고    scopus 로고
    • The integrated methodology of rough set theory and artificial neural network for business failure prediction
    • B.S. Ahn, S.S. Cho, and C.Y. Kim The integrated methodology of rough set theory and artificial neural network for business failure prediction Expert Systems with Applications 18 2000 65 74
    • (2000) Expert Systems with Applications , vol.18 , pp. 65-74
    • Ahn, B.S.1    Cho, S.S.2    Kim, C.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.