-
1
-
-
84862517956
-
Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells
-
L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc. 134(24), 10071-10079 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.24
, pp. 10071-10079
-
-
Dou, L.1
Gao, J.2
Richard, E.3
You, J.4
Chen, C.-C.5
Cha, K.C.6
He, Y.7
Li, G.8
Yang, Y.9
-
2
-
-
79951902039
-
Processable low-bandgap polymers for photovoltaic applications
-
P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater. 23(3), 456-469 (2011).
-
(2011)
Chem. Mater.
, vol.23
, Issue.3
, pp. 456-469
-
-
Boudreault, P.T.1
Najari, A.2
Leclerc, M.3
-
3
-
-
57149111918
-
Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole
-
J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole,” J. Am. Chem. Soc. 130(48), 16144-16145 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.48
, pp. 16144-16145
-
-
Hou, J.1
Chen, H.-Y.2
Zhang, S.3
Li, G.4
Yang, Y.5
-
4
-
-
34547301474
-
Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols
-
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater. 6(7), 497-500 (2007).
-
(2007)
Nat. Mater.
, vol.6
, Issue.7
, pp. 497-500
-
-
Peet, J.1
Kim, J.Y.2
Coates, N.E.3
Ma, W.L.4
Moses, D.5
Heeger, A.J.6
Bazan, G.C.7
-
5
-
-
2042544776
-
Low bandgap polymers for photon harvesting in bulk heterojunction solar cells
-
C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem. 14(7), 1077-1086 (2004).
-
(2004)
J. Mater. Chem.
, vol.14
, Issue.7
, pp. 1077-1086
-
-
Winder, C.1
Sariciftci, N.S.2
-
6
-
-
1842424510
-
Fluorene-based low band-gap copolymers for high performance photovoltaic devices
-
Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett. 84(10), 1653-1655 (2004).
-
(2004)
Appl. Phys. Lett.
, vol.84
, Issue.10
, pp. 1653-1655
-
-
Zhou, Q.1
Hou, Q.2
Zheng, L.3
Deng, X.4
Yu, G.5
Cao, Y.6
-
7
-
-
84860338759
-
Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells
-
N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(17), 2242-2248 (2012).
-
(2012)
Adv. Mater. (Deerfield Beach Fla.)
, vol.24
, Issue.17
, pp. 2242-2248
-
-
Zhou, N.1
Guo, X.2
Ortiz, R.P.3
Li, S.4
Zhang, S.5
Chang, R.P.H.6
Facchetti, A.7
Marks, T.J.8
-
8
-
-
82455210304
-
High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit
-
Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.) 23(45), 5387-5391 (2011).
-
(2011)
Adv. Mater. (Deerfield Beach Fla.)
, vol.23
, Issue.45
, pp. 5387-5391
-
-
Liu, Y.1
Wan, X.2
Wang, F.3
Zhou, J.4
Long, G.5
Tian, J.6
Chen, Y.7
-
9
-
-
67649976796
-
Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices
-
M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc. 131(26), 9281-9286 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.26
, pp. 9281-9286
-
-
Perez, M.D.1
Borek, C.2
Forrest, S.R.3
Thompson, M.E.4
-
10
-
-
70350774564
-
Polymer solar cells with enhanced open-circuit voltage and efficiency
-
H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3(11), 649-653 (2009).
-
(2009)
Nat. Photonics
, vol.3
, Issue.11
, pp. 649-653
-
-
Chen, H.Y.1
Hou, J.H.2
Zhang, S.Q.3
Liang, Y.Y.4
Yang, G.W.5
Yang, Y.6
Yu, L.P.7
Wu, Y.8
Li, G.9
-
11
-
-
38049123581
-
A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility
-
A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater. 17(18), 3836-3842 (2007).
-
(2007)
Adv. Funct. Mater
, vol.17
, Issue.18
, pp. 3836-3842
-
-
Gadisa, A.1
Mammo, W.2
Andersson, L.M.3
Admassie, S.4
Zhang, F.5
Andersson, M.R.6
Inganäs, O.7
-
12
-
-
84860205351
-
Graphene oxide interlayers for robust, highefficiency organic photovoltaics
-
P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, highefficiency organic photovoltaics,” J. Phys. Chem. Lett. 2(24), 3006-3012 (2011).
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, Issue.24
, pp. 3006-3012
-
-
Murray, P.1
Lou, S.J.2
Cote, L.J.3
Loser, S.4
Kadleck, C.J.5
Xu, T.6
Szarko, J.M.7
Rolczynski, B.S.8
Johns, J.E.9
Huang, J.10
Yu, L.11
Chen, L.X.12
Marks, T.J.13
Hersam, M.C.14
-
13
-
-
75149189793
-
Role of ITO and PEDOT:PSS in stability/degradation of polymer:Fullerene bulk heterojunctions solar cells
-
M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells 94(3), 446-450 (2010).
-
(2010)
Sol. Energy Mater. Sol. Cells
, vol.94
, Issue.3
, pp. 446-450
-
-
Girtan, M.1
Rusu, M.2
-
14
-
-
60449105112
-
Longterm stability of efficient inverted P3HT:PCBM solar cells
-
B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells 93(4), 491-96 (2009).
-
(2009)
Sol. Energy Mater. Sol. Cells
, vol.93
, Issue.4
, pp. 491-496
-
-
Zimmermann, B.1
Würfel, U.2
Niggemann, M.3
-
15
-
-
42049112370
-
Stability/degradation of polymer solar cells
-
M. Jorgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells 92(7), 686-714 (2008).
-
(2008)
Sol. Energy Mater. Sol. Cells
, vol.92
, Issue.7
, pp. 686-714
-
-
Jorgensen, M.1
Norrman, K.2
Krebs, F.C.3
-
16
-
-
50249124479
-
Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air
-
P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells 92(11), 1416-1420 (2008).
-
(2008)
Sol. Energy Mater. Sol. Cells
, vol.92
, Issue.11
, pp. 1416-1420
-
-
Vivo, P.1
Jukola, J.2
Ojala, M.3
Chukharev, V.4
Lemmetyinen, H.5
-
17
-
-
27344431891
-
Significant improvement of polymer solar cell stability
-
F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater. 17(21), 5235-5237 (2005).
-
(2005)
Chem. Mater.
, vol.17
, Issue.21
, pp. 5235-5237
-
-
Krebs, F.C.1
Spanggaard, H.2
-
18
-
-
26844438506
-
Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology
-
W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617-1622 (2005).
-
(2005)
Adv. Funct. Mater.
, vol.15
, Issue.10
, pp. 1617-1622
-
-
Ma, W.1
Yang, C.2
Gong, X.3
Lee, K.4
Heeger, A.J.5
-
19
-
-
0029483704
-
Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions
-
G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789-1791 (1995).
-
(1995)
Science
, vol.270
, Issue.5243
, pp. 1789-1791
-
-
Yu, G.1
Gao, J.2
Hummelen, J.C.3
Wudl, F.4
Heeger, A.J.5
-
20
-
-
84858387274
-
Charge formation, recombination, and sweep-out dynamics in organic solar cells
-
S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater. 22(6), 1116-1128 (2012).
-
(2012)
Adv. Funct. Mater.
, vol.22
, Issue.6
, pp. 1116-1128
-
-
Cowan, S.R.1
Banerji, N.2
Leong, W.L.3
Heeger, A.J.4
-
21
-
-
80055062481
-
Organic solar cells: A new look at traditional models, Energy Environ
-
J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci. 4(11), 4410-4422 (2011).
-
(2011)
Sci.
, vol.4
, Issue.11
, pp. 4410-4422
-
-
Servaites, J.D.1
Ratner, M.A.2
Marks, T.J.3
-
22
-
-
27144523175
-
Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials
-
A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett. 94(17), 176-806 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, Issue.17
, pp. 176-806
-
-
Pivrikas, A.1
Juska, G.2
Mozer, A.J.3
Scharber, M.4
Arlauskas, K.5
Sariciftci, N.S.6
Stubb, H.7
Osterbacka, R.8
-
23
-
-
0001053528
-
Modeling photocurrent action spectra of photovoltaic devices based on organic thin films
-
L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487-96 (1999).
-
(1999)
J. Appl. Phys.
, vol.86
, Issue.1
, pp. 487-496
-
-
Pettersson, L.A.A.1
Roman, L.S.2
Inganäs, O.3
-
24
-
-
33845801692
-
Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells
-
D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114-509 (2006).
-
(2006)
J. Appl. Phys
, vol.100
, Issue.11
, pp. 114-509
-
-
Sievers, D.W.1
Shrotriya, V.2
Yang, Y.3
-
25
-
-
33644878875
-
New architecture for highefficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer
-
J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for highefficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572-576 (2006).
-
(2006)
Adv. Mater. (Deerfield Beach Fla.)
, vol.18
, Issue.5
, pp. 572-576
-
-
Kim, J.Y.1
Kim, S.H.2
Lee, H.-H.3
Lee, K.4
Ma, W.5
Gong, X.6
Heeger, A.J.7
-
26
-
-
37149037420
-
An effective light trapping configuration for thin-film solar cells
-
S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243-501 (2007).
-
(2007)
Appl. Phys. Lett
, vol.91
, Issue.24
, pp. 243-501
-
-
Rim, S.-B.1
Zhao, S.2
Scully, S.R.3
Mc Gehee, M.D.4
Peumans, P.5
-
27
-
-
84856465918
-
Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells
-
N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 24(6), 728-732 (2012).
-
(2012)
Adv. Mater. (Deerfield Beach Fla.)
, vol.24
, Issue.6
, pp. 728-732
-
-
Sergeant, N.P.1
Hadipour, A.2
Niesen, B.3
Cheyns, D.4
Heremans, P.5
Peumans, P.6
Rand, B.P.7
-
28
-
-
67650373488
-
Photonic crystal geometry for organic solar cells
-
D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742-2746 (2009).
-
(2009)
Nano Lett
, vol.9
, Issue.7
, pp. 2742-2746
-
-
Ko, D.-H.1
Tumbleston, J.R.2
Zhang, L.3
Williams, S.4
Desimone, J.M.5
Lopez, R.6
Samulski, E.T.7
-
29
-
-
33748683797
-
Efficiency enhancement in Si solar cells by textured photonic crystal back reflector
-
L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111-111 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, Issue.11
, pp. 111
-
-
Zeng, L.1
Yi, Y.2
Hong, C.3
Liu, J.4
Feng, N.5
Duan, X.6
Kimerling, L.C.7
Alamariu, B.A.8
-
30
-
-
9444227029
-
The application of inverse titania opals in nanostructured solar cells
-
C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 85, 115-124 (2005).
-
(2005)
Sol. Energy Mater. Sol. Cells
, vol.85
, pp. 115-124
-
-
Huisman, C.L.1
Schoonman, J.2
Goossens, A.3
-
31
-
-
0001366394
-
Wavelength-selective absorption enhancement in thin-film solar cells
-
P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579-581 (1983).
-
(1983)
Appl. Phys. Lett.
, vol.43
, Issue.6
, pp. 579-581
-
-
Sheng, P.1
Bloch, A.N.2
Stepleman, R.S.3
-
32
-
-
84866252067
-
Plasmonic nanograting design for inverted polymer solar cells
-
I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express 20(S5), A729-A739 (2012).
-
(2012)
Opt. Express
, vol.20
, Issue.S5
, pp. A729-A739
-
-
Kim, I.1
Jeong, D.S.2
Lee, T.S.3
Lee, W.S.4
Lee, K.-S.5
-
33
-
-
77952720808
-
The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer
-
J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078-10087 (2010).
-
(2010)
Opt. Express
, vol.18
, Issue.10
, pp. 10078-10087
-
-
Lee, J.-Y.1
Peumans, P.2
-
34
-
-
52349095203
-
Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices
-
P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113-108 (2008).
-
(2008)
Appl. Phys. Lett.
, vol.93
, Issue.11
, pp. 108-113
-
-
Matheu, P.1
Lim, S.H.2
Derkacs, D.3
Mc Pheeters, C.4
Yu, E.T.5
-
35
-
-
0033907849
-
Trapping light in polymer photodiodes with soft embossed gratings
-
L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.) 12(3), 189-195 (2000).
-
(2000)
Adv. Mater. (Deerfield Beach Fla.)
, vol.12
, Issue.3
, pp. 189-195
-
-
Roman, L.S.1
Inganäs, O.2
Granlund, T.3
Nyberg, T.4
Svensson, M.5
Andersson, M.R.6
Hummelen, J.C.7
-
36
-
-
33751507609
-
Light trapping properties of pyramidally textured surfaces
-
P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243-249 (1987).
-
(1987)
J. Appl. Phys.
, vol.62
, Issue.1
, pp. 243-249
-
-
Campbell, P.1
Green, M.A.2
-
37
-
-
0020091442
-
Intensity enhancement in textured optical sheets for solar cells
-
E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300-305 (1982).
-
(1982)
IEEE Trans. Electron. Dev.
, vol.29
, Issue.2
, pp. 300-305
-
-
Yablonovitch, E.1
Cody, D.G.2
-
38
-
-
0001648250
-
Weak microcavity effects in organic light-emitting devices
-
V. Bulovic, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730-3740 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, Issue.7
, pp. 3730-3740
-
-
Bulovic, V.1
Khalfin, V.2
Gu, G.3
Burrows, P.4
Garbuzov, D.5
Forrest, S.6
-
39
-
-
0028769175
-
Microcavity effects in organic semiconductors
-
L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64(19), 2486-2488 (1994).
-
(1994)
Appl. Phys. Lett.
, vol.64
, Issue.19
, pp. 2486-2488
-
-
Dodabalapur, L.J.1
Rothberg, L.J.2
Miller, T.M.3
Kwock, E.W.4
-
40
-
-
0001189074
-
Organic photo- and electroluminescent devices with double mirrors
-
T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63(5), 594-595 (1993).
-
(1993)
Appl. Phys. Lett.
, vol.63
, Issue.5
, pp. 594-595
-
-
Nakayama, T.1
Itoh, Y.2
Kakuta, A.3
-
41
-
-
72649086329
-
Deep blue, efficient, moderate microcavity organic light-emitting diodes
-
H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron. 11(1), 137-145 (2010).
-
(2010)
Org. Electron.
, vol.11
, Issue.1
, pp. 137-145
-
-
Kim, H.K.1
Cho, S.-H.2
Oh, J.R.3
Lee, Y.-H.4
Lee, J.-H.5
Lee, J.-G.6
Kim, S.-K.7
Park, Y.-I.8
Park, J.-W.9
Do, Y.R.10
-
42
-
-
53749085057
-
Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films
-
J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron. 9(6), 959-963 (2008).
-
(2008)
Org. Electron.
, vol.9
, Issue.6
, pp. 959-963
-
-
Hou, J.1
Wu, J.2
Xie, Z.3
Wang, L.4
-
43
-
-
70449713712
-
Improving optical performance of inverted organic solar cells by microcavity effect
-
Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett. 95(19), 193-301 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.95
, Issue.19
, pp. 193-301
-
-
Long, Y.1
-
44
-
-
79251564109
-
Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity
-
Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett. 98(3), 033301 (2011).
-
(2011)
Appl. Phys. Lett
, vol.98
, Issue.3
, pp. 33301
-
-
Long, Y.1
-
45
-
-
85010117827
-
-
Lasers, Wiley-Interscience, New York, USA
-
P. W. Milonni and J. H. Eberly, Lasers, Wiley-Interscience, New York, USA pp. 342-347 (1998).
-
(1998)
, pp. 342-347
-
-
Milonni, P.W.1
Eberly, J.H.2
-
46
-
-
1642297844
-
Highperformance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition
-
Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “Highperformance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.) 16(4), 321-324 (2004).
-
(2004)
Adv. Mater. (Deerfield Beach Fla.)
, vol.16
, Issue.4
, pp. 321-324
-
-
Yang, Y.1
Huang, Q.2
Metz, A.W.3
Ni, J.4
Jin, S.5
Marks, T.J.6
Madsen, M.E.7
Divenere, A.8
Ho, S.-T.9
-
47
-
-
0022677529
-
Coherent and incoherent reflection and transmission of multilayer structures
-
B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39(3), 165-170 (1986).
-
(1986)
Appl. Phys. B
, vol.39
, Issue.3
, pp. 165-170
-
-
Harbecke, B.1
-
48
-
-
0036642216
-
General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference
-
C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978-3987 (2002).
-
(2002)
Appl. Opt.
, vol.41
, Issue.19
, pp. 3978-3987
-
-
Katsidis, C.C.1
Siapkas, D.I.2
-
49
-
-
77956948185
-
A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance
-
Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res. 43(9), 1227-1236 (2010).
-
(2010)
Acc. Chem. Res.
, vol.43
, Issue.9
, pp. 1227-1236
-
-
Liang, Y.1
Yu, L.2
-
50
-
-
77951907456
-
For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%
-
Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.) 22(20), E135-E138 (2010).
-
(2010)
Adv. Mater. (Deerfield Beach Fla.)
, vol.22
, Issue.20
, pp. E135-E138
-
-
Liang, Y.1
Xu, Z.2
Xia, J.3
Tsai, S.-T.4
Wu, Y.5
Li, G.6
Ray, C.7
Yu, L.8
-
51
-
-
84866405451
-
Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure
-
Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593-597 (2012).
-
(2012)
Nat. Photonics
, vol.6
, Issue.9
, pp. 593-597
-
-
He, Z.1
Zhong, C.2
Su, S.3
Xu, M.4
Wu, H.5
Cao, Y.6
-
52
-
-
67650555653
-
Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties
-
Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc. 131(22), 7792-7799 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.22
, pp. 7792-7799
-
-
Liang, Y.1
Feng, D.2
Wu, Y.3
Tsai, S.-T.4
Li, G.5
Ray, C.6
Yu, L.7
-
53
-
-
80052242857
-
Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells, Energy Environ
-
H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci. 4(9), 3456-3460 (2011).
-
(2011)
Sci.
, vol.4
, Issue.9
, pp. 3456-3460
-
-
Cheun, H.1
Berrigan, J.D.2
Zhou, Y.3
Fenoll, M.4
Shim, J.5
Fuentes-Hernandez, C.6
Sandhage, K.H.7
Kippelen, B.8
-
54
-
-
33751108500
-
The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells
-
J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100(9), 094503 (2006)
-
(2006)
J. Appl. Phys.
, vol.100
, Issue.9
, pp. 94503
-
-
Moulé, J.1
Bonekamp, J.B.2
Meerholz, K.3
|