메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 110-123

A simplified structure evolving method for Mamdani fuzzy system identification and its application to high-dimensional problems

Author keywords

Error driven method; Evolving learning; Fuzzy systems; Mamdani fuzzy systems; System identification

Indexed keywords

AUTOMATIC FEATURE SELECTION; ERROR-DRIVEN METHOD; EVOLVING LEARNING; EXPONENTIAL INCREASE; FUZZY RULE SET; HIGH DIMENSIONS; HIGH-DIMENSIONAL PROBLEMS; INPUT DIMENSIONS; INPUT VARIABLES; LEARNING METHODS; MAMDANI FUZZY SYSTEM; SYSTEM STRUCTURES;

EID: 84868481437     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.12.033     Document Type: Conference Paper
Times cited : (33)

References (34)
  • 3
    • 84868458753 scopus 로고    scopus 로고
    • Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems EFS '06 IEEE Press
    • P. Angelov, D. Filev, N. Kasabov, and O. Cordon Evolving Fuzzy Systems Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems EFS '06 2006 IEEE Press
    • (2006) Evolving Fuzzy Systems
    • Angelov, P.1    Filev, D.2    Kasabov, N.3    Cordon, O.4
  • 6
    • 0034503980 scopus 로고    scopus 로고
    • Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators
    • Y.S. Ding, H. Ying, and S.H. Shao Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators IEEE Transactions on System, Man, and Cybernetics: Part B 30 2000 857 864
    • (2000) IEEE Transactions on System, Man, and Cybernetics: Part B , vol.30 , pp. 857-864
    • Ding, Y.S.1    Ying, H.2    Shao, S.H.3
  • 7
    • 84868478071 scopus 로고    scopus 로고
    • ftp://ics.uci.edu/pub/machine-learning-database/.
  • 8
    • 84868488133 scopus 로고    scopus 로고
    • ftp://ftp.ics.uci.edu/pub/machinelearning-databaseshousing/.
  • 9
    • 84868501296 scopus 로고    scopus 로고
    • http://lib.stat.cmu.edu/datasets/.
  • 10
    • 0027702852 scopus 로고
    • Efficient fuzzy partition of pattern space for classification problems
    • N.H.K. Ishibuchi, and H. Tanaka Efficient fuzzy partition of pattern space for classification problems Fuzzy Sets and Systems 59 1993 295 304
    • (1993) Fuzzy Sets and Systems , vol.59 , pp. 295-304
    • Ishibuchi, N.H.K.1    Tanaka, H.2
  • 12
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks - Algorithms, applications and biological motivation
    • T. Yamakawa, G. Matsumoto, World Scientific Singapore
    • N. Kasabov Evolving fuzzy neural networks - algorithms, applications and biological motivation,;; T. Yamakawa, G. Matsumoto, Methodologies for Conception Design and Application of Soft Computing 1998 World Scientific Singapore 217 274
    • (1998) Methodologies for Conception Design and Application of Soft Computing , pp. 217-274
    • Kasabov, N.1
  • 13
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. Kasabov DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2002 144 153
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-153
    • Kasabov, N.1
  • 14
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • G. Leng, T.M. McGinnity, and G. Prasad An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network Fuzzy Sets and Systems 150 2005 211 243
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 15
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organising fuzzy neural networks
    • G. Leng, G. Prasad, and T.M. McGinnity An on-line algorithm for creating self-organising fuzzy neural networks Neural Networks 17 2004 1477 1493
    • (2004) Neural Networks , vol.17 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 16
    • 33747605322 scopus 로고    scopus 로고
    • Adaptive fuzzy-neural-network control DSP-based permanent magnet linear synchronous motor servo drive
    • F.-J. Lin, and P.-H. Shen Adaptive fuzzy-neural-network control DSP-based permanent magnet linear synchronous motor servo drive IEEE Transactions on Fuzzy Systems 14 2006 481 495
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , pp. 481-495
    • Lin, F.-J.1    Shen, P.-H.2
  • 18
    • 33947271780 scopus 로고    scopus 로고
    • Logic-based fuzzy neurocomputing with unineurons
    • W. Pedrycz Logic-based fuzzy neurocomputing with unineurons IEEE Transactions on Fuzzy Systems 14 2006 860 873
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , pp. 860-873
    • Pedrycz, W.1
  • 20
    • 33947267506 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images
    • H. Qin, and S.X. Yang Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images Fuzzy Sets and Systems 158 2007 1036 1063
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 1036-1063
    • Qin, H.1    Yang, S.X.2
  • 21
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H.J. Rung, N. Sundararajan, G.B. Huang, and P. Saratchandran Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction Fuzzy Sets and Systems 157 2006 1260 1275
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1260-1275
    • Rung, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 24
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • L.-X. Wang, and J.M. Mendel Fuzzy basis functions, universal approximation, and orthogonal least-squares learning IEEE Transactions on Neural Networks 3 1992 807 814
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.M.2
  • 27
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • S. Wu, M.J. Er, and Y. Gao A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks IEEE Transactions on Fuzzy Systems 9 2001 578 594
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 30
    • 79952363383 scopus 로고    scopus 로고
    • A structure evolving learning method for fuzzy systems
    • D. Wang, X.-J. Zeng, and J.A. Keane A structure evolving learning method for fuzzy systems Evolving Systems 1 2010 83 95
    • (2010) Evolving Systems , vol.1 , pp. 83-95
    • Wang, D.1    Zeng, X.-J.2    Keane, J.A.3
  • 32
    • 71149110869 scopus 로고    scopus 로고
    • Fuzzy transforms method and attribute dependency in data analysis
    • F.D. Martino, V. Loia, and S. Sessa Fuzzy transforms method and attribute dependency in data analysis Information Sciences 180 2010 493 505
    • (2010) Information Sciences , vol.180 , pp. 493-505
    • Martino, F.D.1    Loia, V.2    Sessa, S.3
  • 33
    • 79960557692 scopus 로고    scopus 로고
    • A hierarchical model of linguistic variable
    • A.R. Doto A hierarchical model of linguistic variable Information Sciences 181 2011 4394 4408
    • (2011) Information Sciences , vol.181 , pp. 4394-4408
    • Doto, A.R.1
  • 34
    • 79960559801 scopus 로고    scopus 로고
    • Identification of transparent, compact, accurate and reliable linguistic fuzzy models
    • A. Riid, and E. Rustern Identification of transparent, compact, accurate and reliable linguistic fuzzy models Information Sciences 181 2011 4378 4393
    • (2011) Information Sciences , vol.181 , pp. 4378-4393
    • Riid, A.1    Rustern, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.