메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

CLAG: An unsupervised non hierarchical clustering algorithm handling biological data

Author keywords

[No Author keywords available]

Indexed keywords

AFFINITY PROPAGATION CLUSTERING; BINARY MATRIX; BIOLOGICAL DATA; CLUSTER STRUCTURE; CLUSTERING METHODS; CONVERGENCE PROBLEMS; CORRELATION MATRIX; DATA POINTS; FUZZY C MEAN; HIERARCHICAL AGGLOMERATIVE CLUSTERING; HIERARCHICAL CLUSTERING ALGORITHMS; K-MEANS; MODEL-BASED CLUSTERING; MULTI-DIMENSIONAL VECTORS; NUMERICAL VALUES; PROTEIN FAMILY; SUPERVISED CLASSIFICATION; UNDERLYING GRAPHS;

EID: 84868376786     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-194     Document Type: Article
Times cited : (18)

References (34)
  • 2
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by Passing Messages Between Data Points
    • 10.1126/science.1136800, 17218491
    • Frey BJ, Dueck D. Clustering by Passing Messages Between Data Points. Science 2007, 315(5814):972-976. 10.1126/science.1136800, 17218491.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 3
    • 35748982103 scopus 로고    scopus 로고
    • Clustering by soft-constraint affinity propagation: applications to gene-expression data
    • 10.1093/bioinformatics/btm414, 17895277, Sumedha
    • Leone M, Weigt M, Sumedha Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics 2007, 23(20):2708-2715. 10.1093/bioinformatics/btm414, 17895277, Sumedha.
    • (2007) Bioinformatics , vol.23 , Issue.20 , pp. 2708-2715
    • Leone, M.1    Weigt, M.2
  • 4
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which cluster methods? answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? which cluster methods? answers via model-based cluster analysis. Comput J 1998, 41:578-588.
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 5
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • 10.1093/bioinformatics/18.3.413, 11934740
    • McLachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 2002, 18:413-422. 10.1093/bioinformatics/18.3.413, 11934740.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 7
    • 0027453616 scopus 로고
    • Model-Based Gaussian and Non-Gaussian Clustering
    • Banfield JD, Radftery AE. Model-Based Gaussian and Non-Gaussian Clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Radftery, A.E.2
  • 8
    • 0041407143 scopus 로고    scopus 로고
    • Robust Mixture Modelling Using the t Distribution
    • Peel D, McLachlan GJ. Robust Mixture Modelling Using the t Distribution. Stat Comput 2000, 10:339-348.
    • (2000) Stat Comput , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 9
    • 33645505223 scopus 로고    scopus 로고
    • Variable Selection for Model-Based Clustering
    • Raftery A, Dean N. Variable Selection for Model-Based Clustering. J Am Stat Assoc 2006, 101:168-178.
    • (2006) J Am Stat Assoc , vol.101 , pp. 168-178
    • Raftery, A.1    Dean, N.2
  • 10
    • 34547913193 scopus 로고    scopus 로고
    • MCLUST Version 3 for, R Normal Mixture Modeling and Model-Based Clustering
    • Department of Statistics, University of Washington
    • Fraley C, Raftery A, Dean N. MCLUST Version 3 for, R Normal Mixture Modeling and Model-Based Clustering. Technical Report No. 504 2009, Department of Statistics, University of Washington.
    • (2009) Technical Report No. 504
    • Fraley, C.1    Raftery, A.2    Dean, N.3
  • 11
    • 77949534211 scopus 로고    scopus 로고
    • Dynamically Weighted Clustering with Noise Set
    • 10.1093/bioinformatics/btp671, 2815660, 20007256
    • Shen Y, Sun W, Li KC. Dynamically Weighted Clustering with Noise Set. Bioinformatics 2010, 26:341-347. 10.1093/bioinformatics/btp671, 2815660, 20007256.
    • (2010) Bioinformatics , vol.26 , pp. 341-347
    • Shen, Y.1    Sun, W.2    Li, K.C.3
  • 12
    • 15044346962 scopus 로고    scopus 로고
    • Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data
    • 10.1111/j.0006-341X.2005.031032.x, 15737073
    • Tseng GC, Wong WH. Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data. Biometrics 2005, 61:10-16. 10.1111/j.0006-341X.2005.031032.x, 15737073.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 13
    • 81955163061 scopus 로고    scopus 로고
    • Simultaneous Model-Based Clustering and Visualization in the Fisher Discriminative Subspace
    • Bouveyron C, Brunet C. Simultaneous Model-Based Clustering and Visualization in the Fisher Discriminative Subspace. Stat Comput 2012, 22:301-304.
    • (2012) Stat Comput , vol.22 , pp. 301-304
    • Bouveyron, C.1    Brunet, C.2
  • 14
    • 66949114265 scopus 로고    scopus 로고
    • Clustering in the Presence of Scatter
    • 10.1111/j.1541-0420.2008.01064.x, 18537949
    • Maitra R, Ramler I. Clustering in the Presence of Scatter. Biometrics 2009, 65:341-352. 10.1111/j.1541-0420.2008.01064.x, 18537949.
    • (2009) Biometrics , vol.65 , pp. 341-352
    • Maitra, R.1    Ramler, I.2
  • 16
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-Means method for Clustering Microarray Data
    • Dembele D, Kastner P. Fuzzy C-Means method for Clustering Microarray Data. Bioinformatics 2003, 19:976-980.
    • (2003) Bioinformatics , vol.19 , pp. 976-980
    • Dembele, D.1    Kastner, P.2
  • 17
    • 33748624597 scopus 로고    scopus 로고
    • Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies
    • Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 2006, 19:5-24.
    • (2006) Mol Cancer , vol.19 , pp. 5-24
    • Mattie, M.D.1    Benz, C.C.2    Bowers, J.3    Sensinger, K.4    Wong, L.5    Scott, G.K.6    Fedele, V.7    Ginzinger, D.8    Getts, R.9    Haqq, C.10
  • 18
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • 10.1038/415436a, 11807556, Pomeroy
    • Pomeroy Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415:436-442. 10.1038/415436a, 11807556, Pomeroy.
    • (2002) Nature , vol.415 , pp. 436-442
  • 19
    • 70349656526 scopus 로고    scopus 로고
    • A combinatorial approach to detect co-evolved amino-acid networks in protein families with variable divergence
    • 10.1371/journal.pcbi.1000488, 2723916, 19730672
    • Baussand J, Carbone A. A combinatorial approach to detect co-evolved amino-acid networks in protein families with variable divergence. PLoS Comput Biol 2009, 5(9):e1000488. 10.1371/journal.pcbi.1000488, 2723916, 19730672.
    • (2009) PLoS Comput Biol , vol.5 , Issue.9
    • Baussand, J.1    Carbone, A.2
  • 20
    • 0000825481 scopus 로고
    • A statistical method for evaluating systematic relationships
    • Sokal R, Michener C. A statistical method for evaluating systematic relationships. University of Kansas Sci Bull 1958, 38:1409-1438.
    • (1958) University of Kansas Sci Bull , vol.38 , pp. 1409-1438
    • Sokal, R.1    Michener, C.2
  • 21
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • 10.1073/pnas.95.25.14863, 24541, 9843981
    • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS 1998, 95(25):14863-14868. 10.1073/pnas.95.25.14863, 24541, 9843981.
    • (1998) PNAS , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 22
    • 0033536602 scopus 로고    scopus 로고
    • Evolutionary conserved pathways of energetic connectivity in protein families
    • 10.1126/science.286.5438.295, 10514373
    • Lockless SW, Ranganathan R. Evolutionary conserved pathways of energetic connectivity in protein families. Science 1999, 286:295-299. 10.1126/science.286.5438.295, 10514373.
    • (1999) Science , vol.286 , pp. 295-299
    • Lockless, S.W.1    Ranganathan, R.2
  • 23
    • 3543089710 scopus 로고    scopus 로고
    • A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments
    • 10.1093/bioinformatics/bth128, 14962924
    • Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004, 20:1565-1572. 10.1093/bioinformatics/bth128, 14962924.
    • (2004) Bioinformatics , vol.20 , pp. 1565-1572
    • Dekker, J.P.1    Fodor, A.2    Aldrich, R.W.3    Yellen, G.4
  • 24
    • 18544362952 scopus 로고    scopus 로고
    • Mutual Information in protein multiple sequence alignments reveals two classes of coevolving positions
    • 10.1021/bi050293e, 15882054
    • Gloor GB, Martin LC, Wahl LM, Dunn SD. Mutual Information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 2005, 44:7156-7165. 10.1021/bi050293e, 15882054.
    • (2005) Biochemistry , vol.44 , pp. 7156-7165
    • Gloor, G.B.1    Martin, L.C.2    Wahl, L.M.3    Dunn, S.D.4
  • 25
    • 38349135391 scopus 로고    scopus 로고
    • An integrated system for studying residue coevolution in proteins
    • 10.1093/bioinformatics/btm584, 18056067
    • Yip KY, Patel P, Kim PM, Engelman DM, McDermott D, Gerstein M. An integrated system for studying residue coevolution in proteins. Bioinformatics 2008, 24:290-292. 10.1093/bioinformatics/btm584, 18056067.
    • (2008) Bioinformatics , vol.24 , pp. 290-292
    • Yip, K.Y.1    Patel, P.2    Kim, P.M.3    Engelman, D.M.4    McDermott, D.5    Gerstein, M.6
  • 26
    • 0037219686 scopus 로고    scopus 로고
    • Evolutionary conserved networks of residues mediate allosteric communication in proteins
    • Suel GM, Lockless SW, Wall MA, Ranganathan R. Evolutionary conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 2003, 23:59-69.
    • (2003) Nat Struct Biol , vol.23 , pp. 59-69
    • Suel, G.M.1    Lockless, S.W.2    Wall, M.A.3    Ranganathan, R.4
  • 27
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963, 58:236-244.
    • (1963) J Am Stat Assoc , vol.58 , pp. 236-244
    • Ward Jr, J.H.1
  • 28
    • 0037469105 scopus 로고    scopus 로고
    • Modelling High-Dimensional Data by Mixtures of Factor Analyzers
    • McLachlan GJ, Peel D, Bean RW. Modelling High-Dimensional Data by Mixtures of Factor Analyzers. Comput Stat Data Anal 2003, 41:379-388.
    • (2003) Comput Stat Data Anal , vol.41 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 29
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian Mixture Models
    • McNicholas P, Murphy T. Parsimonious Gaussian Mixture Models. Stat Comput 2008, 18:285-296.
    • (2008) Stat Comput , vol.18 , pp. 285-296
    • McNicholas, P.1    Murphy, T.2
  • 30
    • 12944295084 scopus 로고    scopus 로고
    • An on-line ICA-mixture-model-based self-constructing fuzzy neural network
    • Lin CT, Cheng WC, Liang SF. An on-line ICA-mixture-model-based self-constructing fuzzy neural network. IEEE Trans Circuits and Syst 2005, 52(1):207-221.
    • (2005) IEEE Trans Circuits and Syst , vol.52 , Issue.1 , pp. 207-221
    • Lin, C.T.1    Cheng, W.C.2    Liang, S.F.3
  • 31
    • 2642574503 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing, ISBN 3-900051-07-0., R Development Core Team R
    • R Development Core Team R A Language and Environment for Statistical Computing 2008, Vienna: R Foundation for Statistical Computing, ISBN 3-900051-07-0. [http://www.R-project.org], R Development Core Team R.
    • (2008) A Language and Environment for Statistical Computing
  • 33
    • 84870779125 scopus 로고    scopus 로고
    • Synthetic Data Generator for Clustering and Outlier Analysis Technical report
    • Computing Science Department, University of Alberta, Edmonton, Canada
    • Yaling P, Osmar Zaïane A. Synthetic Data Generator for Clustering and Outlier Analysis Technical report. 2006, Computing Science Department, University of Alberta, Edmonton, Canada.
    • (2006)
    • Yaling, P.1    Osmar Zaïane, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.