메뉴 건너뛰기




Volumn 22, Issue 1, 2012, Pages 301-324

Simultaneous model-based clustering and visualization in the Fisher discriminative subspace

Author keywords

Discriminative subspace; Fisher criterion; High dimensional clustering; Model based clustering; Parsimonious models; Visualization

Indexed keywords


EID: 81955163061     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9249-9     Document Type: Article
Times cited : (93)

References (53)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716-723 (1974).
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 61449256587 scopus 로고    scopus 로고
    • Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation
    • Alexandrov, T., Decker, J., Mertens, B., Deelder, A., Tollenaar, R., Maass, P., Thiele, H.: Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation. Bioinformatics 25(5), 643-649 (2009).
    • (2009) Bioinformatics , vol.25 , Issue.5 , pp. 643-649
    • Alexandrov, T.1    Decker, J.2    Mertens, B.3    Deelder, A.4    Tollenaar, R.5    Maass, P.6    Thiele, H.7
  • 4
    • 0002263953 scopus 로고
    • The irises of the Gaspé Peninsula
    • Anderson, E.: The irises of the Gaspé Peninsula. Bull. Am. Iris Soc. 59, 2-5 (1935).
    • (1935) Bull. Am. Iris Soc. , vol.59 , pp. 2-5
    • Anderson, E.1
  • 5
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
    • Baek, J., McLachlan, G., Flack, L.: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1298-1309 (2010).
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.7 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.2    Flack, L.3
  • 6
    • 0003787146 scopus 로고
    • Princeton: Princeton University Press
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957).
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 7
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719-725 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 8
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki, C., Celeux, G., Govaert, G.: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal. 41, 561-575 (2003).
    • (2003) Comput. Stat. Data Anal. , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 9
    • 0347963789 scopus 로고    scopus 로고
    • The generative topographic mapping
    • Bishop, C., Svensen, M.: The generative topographic mapping. Neural Comput. 10(1), 215-234 (1998).
    • (1998) Neural Comput. , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensen, M.2
  • 10
    • 67650370037 scopus 로고    scopus 로고
    • A hybrid feature extraction selection approach for high-dimensional non-Gaussian data clustering
    • Boutemedjet, S., Bouguila, N., Ziou, D.: A hybrid feature extraction selection approach for high-dimensional non-Gaussian data clustering. IEEE Trans. PAMI 31(8), 1429-1443 (2009).
    • (2009) IEEE Trans. PAMI , vol.31 , Issue.8 , pp. 1429-1443
    • Boutemedjet, S.1    Bouguila, N.2    Ziou, D.3
  • 12
    • 84985598237 scopus 로고
    • Canonical variate analysis: a general model formulation
    • Campbell, N.: Canonical variate analysis: a general model formulation. Aust. J. Stat. 28, 86-96 (1984).
    • (1984) Aust. J. Stat. , vol.28 , pp. 86-96
    • Campbell, N.1
  • 13
    • 0002241694 scopus 로고
    • The SEM algorithm: a probabilistic teacher algorithm from the EM algorithm for the mixture problem
    • Celeux, G., Diebolt, J.: The SEM algorithm: a probabilistic teacher algorithm from the EM algorithm for the mixture problem. Comput. Stat. Q. 2(1), 73-92 (1985).
    • (1985) Comput. Stat. Q. , vol.2 , Issue.1 , pp. 73-92
    • Celeux, G.1    Diebolt, J.2
  • 14
    • 0001626339 scopus 로고
    • A classification E. M. algorithm for clustering and two stochastic versions
    • Celeux, G., Govaert, G.: A classification E. M. algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14, 315-332 (1992).
    • (1992) Comput. Stat. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 15
    • 0036721824 scopus 로고    scopus 로고
    • K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    • Clausi, D. A.: K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognit. 35, 1959-1972 (2002).
    • (2002) Pattern Recognit. , vol.35 , pp. 1959-1972
    • Clausi, D.A.1
  • 16
    • 58349120587 scopus 로고    scopus 로고
    • Adaptative dimension reduction using discriminant analysis and k-means clustering
    • Ding, C., Li, T.: Adaptative dimension reduction using discriminant analysis and k-means clustering. In: ICML (2007).
    • (2007) ICML
    • Ding, C.1    Li, T.2
  • 18
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179-188 (1936).
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.1
  • 19
    • 0016484071 scopus 로고
    • An optimal set of discriminant vectors
    • Foley, D., Sammon, J.: An optimal set of discriminant vectors. IEEE Trans. Comput. 24, 281-289 (1975).
    • (1975) IEEE Trans. Comput. , vol.24 , pp. 281-289
    • Foley, D.1    Sammon, J.2
  • 20
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: software for model-based cluster analysis
    • Fraley, C., Raftery, A.: MCLUST: software for model-based cluster analysis. J. Classif. 16, 297-306 (1999).
    • (1999) J. Classif. , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.2
  • 21
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., Raftery, A.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458) (2002).
    • (2002) J. Am. Stat. Assoc , vol.97 , Issue.458
    • Fraley, C.1    Raftery, A.2
  • 22
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84, 165-175 (1989).
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 165-175
    • Friedman, J.1
  • 24
  • 25
    • 0346034995 scopus 로고    scopus 로고
    • A generalized Foley-Sammon transform based on generalized Fisher discriminant criterion and its application to face recognition
    • Guo, Y. F., Li, S. J., Yang, J. Y., Shu, T. T., Wu, L. D.: A generalized Foley-Sammon transform based on generalized Fisher discriminant criterion and its application to face recognition. Pattern Recognit. Lett. 24, 147-158 (2003).
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 147-158
    • Guo, Y.F.1    Li, S.J.2    Yang, J.Y.3    Shu, T.T.4    Wu, L.D.5
  • 26
    • 0026358089 scopus 로고
    • A note on the orthonormal discriminant vector method for feature extraction
    • Hamamoto, Y., Matsuura, Y., Kanaoka, T., Tomita, S.: A note on the orthonormal discriminant vector method for feature extraction. Pattern Recognit. 24(7), 681-684 (1991).
    • (1991) Pattern Recognit. , vol.24 , Issue.7 , pp. 681-684
    • Hamamoto, Y.1    Matsuura, Y.2    Kanaoka, T.3    Tomita, S.4
  • 27
    • 21844486429 scopus 로고
    • Penalized discriminant analysis
    • Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Stat. 23, 73-102 (1995).
    • (1995) Ann. Stat. , vol.23 , pp. 73-102
    • Hastie, T.1    Buja, A.2    Tibshirani, R.3
  • 29
    • 3242707002 scopus 로고    scopus 로고
    • Generalizing discriminant analysis using the generalized singular value decomposition
    • Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995-1006 (2004).
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.8 , pp. 995-1006
    • Howland, P.1    Park, H.2
  • 30
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: a review
    • Jain, A., Marty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264-323 (1999).
    • (1999) ACM Comput. Surv. , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.1    Marty, M.2    Flynn, P.3
  • 31
    • 0035480085 scopus 로고    scopus 로고
    • Face recognition based on the uncorrelated optimal discriminant vectors
    • Jin, Z., Yang, J., Hu, Z., Lou, Z.: Face recognition based on the uncorrelated optimal discriminant vectors. Pattern Recognit. 10(34), 2041-2047 (2001).
    • (2001) Pattern Recognit. , vol.10 , Issue.34 , pp. 2041-2047
    • Jin, Z.1    Yang, J.2    Hu, Z.3    Lou, Z.4
  • 33
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf, G., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33(1), 82-95 (1971).
    • (1971) J. Math. Anal. Appl. , vol.33 , Issue.1 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 35
    • 33749243962 scopus 로고    scopus 로고
    • Discriminative cluster analysis
    • la Torre Frade, F. D., Kanade, T.: Discriminative cluster analysis. In: ICML, pp. 241-248 (2006).
    • (2006) ICML , pp. 241-248
    • la Torre Frade, F.D.1    Kanade, T.2
  • 36
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Law, M., Figueiredo, M., Jain, A.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. PAMI 26(9), 1154-1166 (2004).
    • (2004) IEEE Trans. PAMI , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.1    Figueiredo, M.2    Jain, A.3
  • 37
    • 0026897846 scopus 로고
    • A generalized optimal set of discriminant vectors
    • Liu, K., Cheng, Y. Q., Yang, J. Y.: A generalized optimal set of discriminant vectors. Pattern Recognit. 25(7), 731-739 (1992).
    • (1992) Pattern Recognit. , vol.25 , Issue.7 , pp. 731-739
    • Liu, K.1    Cheng, Y.Q.2    Yang, J.Y.3
  • 38
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with Gaussian mixture models
    • Maugis, C., Celeux, G., Martin-Magniette, M. L.: Variable selection for clustering with Gaussian mixture models. Biometrics 65(3), 701-709 (2009).
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.L.3
  • 41
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high-dimensional data by mixtures of factor analyzers
    • McLachlan, G., Peel, D., Bean, R.: Modelling high-dimensional data by mixtures of factor analyzers. Comput Stat. Data Anal. 41, 379 (2003).
    • (2003) Comput Stat. Data Anal. , vol.41 , pp. 379
    • McLachlan, G.1    Peel, D.2    Bean, R.3
  • 42
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas, P., Murphy, B.: Parsimonious Gaussian mixture models. Stat. Comput. 18(3), 285-296 (2008).
    • (2008) Stat. Comput. , vol.18 , Issue.3 , pp. 285-296
    • McNicholas, P.1    Murphy, B.2
  • 43
    • 78751536244 scopus 로고    scopus 로고
    • Heteroscedastic factor mixture analysis
    • Montanari, A., Viroli, C.: Heteroscedastic factor mixture analysis. Stat. Model. 10(4), 441-460 (2010).
    • (2010) Stat. Model. , vol.10 , Issue.4 , pp. 441-460
    • Montanari, A.1    Viroli, C.2
  • 44
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 6(1), 69-76 (1998).
    • (1998) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 69-76
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 45
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • Raftery, A., Dean, N.: Variable selection for model-based clustering. J. Am. Stat. Assoc. 101(473), 168-178 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.473 , pp. 168-178
    • Raftery, A.1    Dean, N.2
  • 46
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D., Thayer, D.: EM algorithms for ML factor analysis. Psychometrika 47(1), 69-76 (1982).
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 47
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 49
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping, E., Bishop, C.: Mixtures of probabilistic principal component analysers. Neural Comput. 11(2), 443-482 (1999).
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, E.1    Bishop, C.2
  • 50
    • 33947616780 scopus 로고    scopus 로고
    • DALASS: variable selection in discriminant analysis via the LASSO
    • Trendafilov, N., Jolliffe, I. T.: DALASS: variable selection in discriminant analysis via the LASSO. Comput. Stat. Data Anal. 51, 3718-3736 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 3718-3736
    • Trendafilov, N.1    Jolliffe, I.T.2
  • 51
    • 33749835113 scopus 로고    scopus 로고
    • The curse of dimensionality in data mining and time series prediction
    • Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: IWANN (2005).
    • (2005) IWANN
    • Verleysen, M.1    François, D.2
  • 52
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Ye, J.: Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Res. 6, 483-502 (2005).
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 483-502
    • Ye, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.