메뉴 건너뛰기




Volumn , Issue , 2012, Pages 401-406

A novel hybrid genetic algorithm and Simulated Annealing for feature selection and kernel optimization in support vector regression

Author keywords

[No Author keywords available]

Indexed keywords

ACCEPTANCE CRITERIA; CROSSOVER OPERATOR; EVOLUTION PROCESS; FLOOD MANAGEMENT; GUANGXI; HYBRID GENETIC ALGORITHMS; HYBRID OPTIMIZATION; INPUT FEATURES; KERNEL FUNCTION; KERNEL OPTIMIZATIONS; KERNEL PARAMETER; LOCAL OPTIMAL SOLUTION; OPTIMAL VALUES; PREDICTION-ERROR VALUES; RAINFALL FORECASTING; SUPPORT VECTOR REGRESSION (SVR);

EID: 84868315951     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IRI.2012.6303037     Document Type: Conference Paper
Times cited : (11)

References (20)
  • 1
    • 58049099887 scopus 로고    scopus 로고
    • Support vector regression for link load prediction
    • P. Bermolen and D. Rossi. Support vector regression for link load prediction. Computer Networks, 53:191-201, 2009.
    • (2009) Computer Networks , vol.53 , pp. 191-201
    • Bermolen, P.1    Rossi, D.2
  • 2
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid sarima and support vector machines in forecasting the production values of the machinery industry in taiwan
    • K. Y. Chen and C. H. Wang. A hybrid sarima and support vector machines in forecasting the production values of the machinery industry in taiwan. Expert Systems with Applications, 32:254-264, 2007.
    • (2007) Expert Systems with Applications , vol.32 , pp. 254-264
    • Chen, K.Y.1    Wang, C.H.2
  • 3
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • K. Y. Chen and C. H. Wang. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 28:215-226, 2007.
    • (2007) Tourism Management , vol.28 , pp. 215-226
    • Chen, K.Y.1    Wang, C.H.2
  • 5
    • 0025449198 scopus 로고
    • Simulated annealing: A tool for operation research
    • R. W. Eglese. Simulated annealing: a tool for operation research. European Journal of Operational Research, 46:271-281, 1990.
    • (1990) European Journal of Operational Research , vol.46 , pp. 271-281
    • Eglese, R.W.1
  • 8
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • K. Gwangseob and P. B. Ana. Quantitative flood forecasting using multisensor data and neural networks. Journal of Hydrology, 246:45-62, 2001.
    • (2001) Journal of Hydrology , vol.246 , pp. 45-62
    • Gwangseob, K.1    Ana, P.B.2
  • 10
    • 48749133695 scopus 로고    scopus 로고
    • Integrating ga based time scale feature extractions with svms for stock index forecasting
    • S. C. Huang and T. K. Wu. Integrating ga based time scale feature extractions with svms for stock index forecasting. Expert Systems with Applications, 35:2080-2088, 2008.
    • (2008) Expert Systems with Applications , vol.35 , pp. 2080-2088
    • Huang, S.C.1    Wu, T.K.2
  • 11
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S. W. Lin, K. C. Ying, and S.-C. Chen. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 35:1817-1824, 2008.
    • (2008) Expert Systems with Applications , vol.35 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.-C.3
  • 12
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • C. J. Lu, T. S. Lee, and C. C. Chi. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47:115-125, 2009.
    • (2009) Decision Support Systems , vol.47 , pp. 115-125
    • Lu, C.J.1    Lee, T.S.2    Chi, C.C.3
  • 14
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • F. E. H. Tay and L. Cao. Modified support vector machines in financial time series forecasting. Neurocomputing, 48(1-4):847-861, 2002.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.2
  • 16
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • Cambridge, MA: MIT Press
    • V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation and signal processing. In Advance in neural information processing system, Cambridge, 1997. MA: MIT Press.
    • (1997) Advance in Neural Information Processing System
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 17
    • 69849087028 scopus 로고    scopus 로고
    • A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network
    • J. Wu. A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network. Lecture Note in Computer Science, 5553(3):49-58, 2009.
    • (2009) Lecture Note in Computer Science , vol.5553 , Issue.3 , pp. 49-58
    • Wu, J.1
  • 18
    • 84863377968 scopus 로고    scopus 로고
    • An effective hybrid semi-parametric regression strategy for rainfall forecasting combining linear and nonlinear regression
    • J. Wu. An effective hybrid semi-parametric regression strategy for rainfall forecasting combining linear and nonlinear regression. International Journal of Applied Evolutionary Computation, 2(4):50-65, 2011.
    • (2011) International Journal of Applied Evolutionary Computation , vol.2 , Issue.4 , pp. 50-65
    • Wu, J.1
  • 19
    • 77953513773 scopus 로고    scopus 로고
    • A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology
    • J. Wu, L. Jin, and M. Liu. A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology. International Journal of Computational Intelligence and Applications, 9(3):87-104, 2010.
    • (2010) International Journal of Computational Intelligence and Applications , vol.9 , Issue.3 , pp. 87-104
    • Wu, J.1    Jin, L.2    Liu, M.3
  • 20
    • 80455138693 scopus 로고    scopus 로고
    • Least square support vector machine ensemble for daily rainfall forecasting based on linear and nonlinear regression
    • Z. Zeng and J. Wang, editors, Adv. in Neural Network Research and Appli., Springer-Verla
    • J. Wu, M. Liu, and L. Jin. Least square support vector machine ensemble for daily rainfall forecasting based on linear and nonlinear regression. In Z. Zeng and J. Wang, editors, Adv. in Neural Network Research and Appli., LNEE. Springer-Verla, 2010.
    • (2010) LNEE
    • Wu, J.1    Liu, M.2    Jin, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.