메뉴 건너뛰기




Volumn 64, Issue 10, 2012, Pages 3046-3052

Sequential fractional differential equations with three-point boundary conditions

Author keywords

Differential equation; Existence; Fixed point; Fractional order; Three point boundary conditions

Indexed keywords

CONTRACTION MAPPING PRINCIPLES; EXISTENCE; EXISTENCE RESULTS; FIXED POINTS; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL ORDER; GAMMA FUNCTION; ILLUSTRATIVE EXAMPLES; INCOMPLETE GAMMA FUNCTIONS; KRASNOSELSKII'S FIXED-POINT THEOREM; NONLINEAR ORDINARY DIFFERENTIAL EQUATION; NONLOCAL BOUNDARY-VALUE PROBLEMS; THIRD-ORDER; THREE POINT BOUNDARY VALUE PROBLEMS;

EID: 84868204874     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2012.02.036     Document Type: Article
Times cited : (92)

References (33)
  • 5
    • 68949086378 scopus 로고    scopus 로고
    • Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations
    • 9. Art. ID 494720
    • B. Ahmad, and J.J. Nieto Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations Abstr. Appl. Anal. 2009 9. Art. ID 494720
    • (2009) Abstr. Appl. Anal.
    • Ahmad, B.1    Nieto, J.J.2
  • 6
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 7
    • 76749131977 scopus 로고    scopus 로고
    • Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations
    • B. Ahmad Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations Appl. Math. Lett. 23 2010 390 394
    • (2010) Appl. Math. Lett. , vol.23 , pp. 390-394
    • Ahmad, B.1
  • 8
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 9
    • 77953683625 scopus 로고    scopus 로고
    • An existence result for a superlinear fractional differential equation
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal An existence result for a superlinear fractional differential equation Appl. Math. Lett. 23 2010 1129 1132
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1129-1132
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 10
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1
  • 11
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Z. Bai On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 2010 916 924
    • (2010) Nonlinear Anal. , vol.72 , pp. 916-924
    • Bai, Z.1
  • 12
    • 77952525187 scopus 로고    scopus 로고
    • Regularity of harmonic functions for anisotropic fractional Laplacians
    • P. Sztonyk Regularity of harmonic functions for anisotropic fractional Laplacians Math. Nachr. 283 2 2010 89 311
    • (2010) Math. Nachr. , vol.283 , Issue.2 , pp. 89-311
    • Sztonyk, P.1
  • 13
    • 78149286185 scopus 로고    scopus 로고
    • Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
    • G. Wang, B. Ahmad, and L. Zhang Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order Nonlinear Anal. 74 2011 792 804
    • (2011) Nonlinear Anal. , vol.74 , pp. 792-804
    • Wang, G.1    Ahmad, B.2    Zhang, L.3
  • 16
    • 79960994576 scopus 로고    scopus 로고
    • Some boundary value problems of fractional differential equations and inclusions
    • B. Ahmad, J.J. Nieto, and J. Pimentel Some boundary value problems of fractional differential equations and inclusions Comput. Math. Appl. 62 2011 1238 1250
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1238-1250
    • Ahmad, B.1    Nieto, J.J.2    Pimentel, J.3
  • 17
    • 78049494452 scopus 로고    scopus 로고
    • Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
    • Z. Tomovski, R. Hilfer, and H.M. Srivastava Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions Integral Transforms Spec. Funct. 21 2010 797 814
    • (2010) Integral Transforms Spec. Funct. , vol.21 , pp. 797-814
    • Tomovski, Z.1    Hilfer, R.2    Srivastava, H.M.3
  • 18
    • 79956368567 scopus 로고    scopus 로고
    • Waves in viscoelastic media described by a linear fractional model
    • S. Konjik, L. Oparnica, and D. Zorica Waves in viscoelastic media described by a linear fractional model Integral Transforms Spec. Funct. 22 2011 283 291
    • (2011) Integral Transforms Spec. Funct. , vol.22 , pp. 283-291
    • Konjik, S.1    Oparnica, L.2    Zorica, D.3
  • 19
    • 79952093526 scopus 로고    scopus 로고
    • A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications
    • V. Keyantuo, and C. Lizama A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications Math. Nachr. 284 2011 494 506
    • (2011) Math. Nachr. , vol.284 , pp. 494-506
    • Keyantuo, V.1    Lizama, C.2
  • 20
    • 84859401607 scopus 로고    scopus 로고
    • On a Riemann-Liouville fractional analog of the Laplace operator with positive energy
    • doi:10.1080/10652469.2011.576832 (in press)
    • M.D. Riva, S. Yakubovich, On a Riemann-Liouville fractional analog of the Laplace operator with positive energy, Integral Transforms Spec. Funct. (in press) doi:10.1080/10652469.2011.576832.
    • Integral Transforms Spec. Funct.
    • Riva, M.D.1    Yakubovich, S.2
  • 22
    • 85085400023 scopus 로고    scopus 로고
    • Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations
    • Z. Wei, and W. Dong Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations Electron. J. Qual. Theory Differ. Equ. 87 2011 1 13
    • (2011) Electron. J. Qual. Theory Differ. Equ. , vol.87 , pp. 1-13
    • Wei, Z.1    Dong, W.2
  • 23
    • 77049084247 scopus 로고    scopus 로고
    • Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
    • Z. Wei, Q. Li, and J. Che Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative J. Math. Anal. Appl. 367 2010 260 272
    • (2010) J. Math. Anal. Appl. , vol.367 , pp. 260-272
    • Wei, Z.1    Li, Q.2    Che, J.3
  • 24
    • 79960285223 scopus 로고    scopus 로고
    • Sequential fractional differential equations with Hadamard derivative
    • M. Klimek Sequential fractional differential equations with Hadamard derivative Commun. Nonlinear Sci. Numer. Simul. 16 2011 4689 4697
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 4689-4697
    • Klimek, M.1
  • 25
    • 80052260699 scopus 로고    scopus 로고
    • p-solutions for a class of sequential fractional differential equations
    • p-solutions for a class of sequential fractional differential equations Appl. Math. Comput. 218 2011 2074 2081
    • (2011) Appl. Math. Comput. , vol.218 , pp. 2074-2081
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 26
    • 79961030418 scopus 로고    scopus 로고
    • Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative
    • C. Bai Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative J. Math. Anal. Appl. 384 2011 211 231
    • (2011) J. Math. Anal. Appl. , vol.384 , pp. 211-231
    • Bai, C.1
  • 28
    • 80052033987 scopus 로고    scopus 로고
    • Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces
    • F.T. Akyildiz, H. Bellout, K. Vajravelu, and R.A. Van Gorder Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces Nonlinear Anal. RWA 12 2011 2919 2930
    • (2011) Nonlinear Anal. RWA , vol.12 , pp. 2919-2930
    • Akyildiz, F.T.1    Bellout, H.2    Vajravelu, K.3    Van Gorder, R.A.4
  • 29
    • 80054946851 scopus 로고    scopus 로고
    • A study of nonlinear Langevin equation involving two fractional orders in different intervals
    • B. Ahmad, J.J. Nieto, A. Alsaedi, and M. El-Shahed A study of nonlinear Langevin equation involving two fractional orders in different intervals Nonlinear Anal. RWA 13 2012 599 606
    • (2012) Nonlinear Anal. RWA , vol.13 , pp. 599-606
    • Ahmad, B.1    Nieto, J.J.2    Alsaedi, A.3    El-Shahed, M.4
  • 31
    • 84861610612 scopus 로고    scopus 로고
    • A note on the real zeros of the incomplete gamma function
    • doi:10.1080/10652469.2011.597391 (in press)
    • I. Thompson, A note on the real zeros of the incomplete gamma function, Integral Transforms Spec. Funct. (in press) doi:10.1080/10652469.2011.597391.
    • Integral Transforms Spec. Funct.
    • Thompson, I.1
  • 32
    • 80052424585 scopus 로고    scopus 로고
    • A generalized gamma model associated with a Bessel function
    • N. Sebastian A generalized gamma model associated with a Bessel function Integral Transforms Spec. Funct. 22 2011 631 645
    • (2011) Integral Transforms Spec. Funct. , vol.22 , pp. 631-645
    • Sebastian, N.1
  • 33
    • 0001188942 scopus 로고
    • Two remarks on the method of successive approximations
    • M.A. Krasnoselskii Two remarks on the method of successive approximations Uspekhi Mat. Nauk 10 1955 123 127
    • (1955) Uspekhi Mat. Nauk , vol.10 , pp. 123-127
    • Krasnoselskii, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.