-
1
-
-
0001871487
-
Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications
-
H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186, 5-56 (1997).
-
(1997)
Math. Nachr.
, vol.186
, pp. 5-56
-
-
Amann, H.1
-
2
-
-
0036628277
-
The operator-valued Marcinkiewicz multiplier theorem and maximal regularity
-
W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z. 240, 311-343 (2002).
-
(2002)
Math. Z.
, vol.240
, pp. 311-343
-
-
Arendt, W.1
Bu, S.2
-
3
-
-
2442662590
-
Operator-valued Fourier multipliers on periodic Besov spaces and applications
-
W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. 47(1), 15-33 (2004).
-
(2004)
Proc. Edinb. Math. Soc.
, vol.47
, Issue.1
, pp. 15-33
-
-
Arendt, W.1
Bu, S.2
-
4
-
-
1842479599
-
Fourier multipliers for Hölder continuous functions and maximal regularity
-
W. Arendt, C. Batty, and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Stud. Math. 160(1), 23-51 (2004).
-
(2004)
Stud. Math.
, vol.160
, Issue.1
, pp. 23-51
-
-
Arendt, W.1
Batty, C.2
Bu, S.3
-
5
-
-
0001311725
-
Stochastic solutions for fractional Cauchy problems
-
B. Baeumer and M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4(4), 481-500 (2001).
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, Issue.4
, pp. 481-500
-
-
Baeumer, B.1
Meerschaert, M.M.2
-
6
-
-
0035014974
-
Subordinated advection-dispersion equation for contaminant transport
-
B. Baeumer, M. M. Meerschaert, D. A. Benson, and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resources Research 37, 1543-1550 (2001).
-
(2001)
Water Resources Research
, vol.37
, pp. 1543-1550
-
-
Baeumer, B.1
Meerschaert, M.M.2
Benson, D.A.3
Wheatcraft, S.W.4
-
7
-
-
79952084883
-
-
Anomalous dispersion by subordinating groups of linear operators and the related unbounded operational calculus (Preprint.
-
B. Baeumer and M. Kovács, Anomalous dispersion by subordinating groups of linear operators and the related unbounded operational calculus (Preprint, 2008).
-
(2008)
-
-
Baeumer, B.1
Kovács, M.2
-
8
-
-
0000078998
-
From continuous time random walks to the fractional Fokker-Planck equation
-
E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E 61, 132-138 (2000).
-
(2000)
Phys. Rev. E
, vol.61
, pp. 132-138
-
-
Barkai, E.1
Metzler, R.2
Klafter, J.3
-
9
-
-
79952083824
-
-
Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven University of Technology.
-
E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven University of Technology (2001).
-
(2001)
-
-
Bazhlekova, E.1
-
10
-
-
0009280706
-
Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985), Lecture Notes in Mathematics
-
Springer, Berlin.
-
D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985), Lecture Notes in Mathematics Vol. 1206 (Springer, Berlin, 1986), pp. 61-108.
-
(1986)
, vol.1206
, pp. 61-108
-
-
Burkholder, D.L.1
-
11
-
-
0002217735
-
An access to fractional differentiation via fractional difference quotients, Lecture Notes in Mathematics
-
Springer, Berlin.
-
P. L. Butzer and U. Westphal, An access to fractional differentiation via fractional difference quotients, Lecture Notes in Mathematics Vol. 457 (Springer, Berlin, 1975), pp. 116-140.
-
(1975)
, vol.457
, pp. 116-140
-
-
Butzer, P.L.1
Westphal, U.2
-
12
-
-
27844477793
-
p maximal regularity for second order Cauchy problems
-
p maximal regularity for second order Cauchy problems, Math. Z. 251(4), 751-781 (2005).
-
(2005)
Math. Z.
, vol.251
, Issue.4
, pp. 751-781
-
-
Chill, R.1
Srivastava, S.2
-
13
-
-
0242287337
-
R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type
-
(Am. Math. Soc., Providence, R.I.).
-
R. Denk, M. Hieber, and J. Prüss, R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Mem. Am. Math. Soc. 166 (Am. Math. Soc., Providence, R.I., 2003).
-
(2003)
Mem. Am. Math. Soc.
, vol.166
-
-
Denk, R.1
Hieber, M.2
Prüss, J.3
-
14
-
-
1942542248
-
Cauchy problem for fractional diffusion equations
-
S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations 199, 211-255 (2004).
-
(2004)
J. Differ. Equations
, vol.199
, pp. 211-255
-
-
Eidelman, S.D.1
Kochubei, A.N.2
-
15
-
-
0002847893
-
Fractals and Fractional Calculus in Continuum Mechanics
-
in:, edited by A. Carpinteri and F. Mainardi (Springer Verlag, Wien, -
-
R. Gorenflo and F. Mainardi, Fractional calculus, integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi (Springer Verlag, Wien, 1997), pp. 223-276.
-
(1997)
Fractional calculus, integral and differential equations of fractional order
, pp. 223-276
-
-
Gorenflo, R.1
Mainardi, F.2
-
16
-
-
0000103589
-
Wright functions as scale-invariant solutions of the diffusion-wave equation
-
R. Gorenflo, Y. Luchko, and F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118, 175-191 (2000).
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 175-191
-
-
Gorenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
17
-
-
0000238491
-
Über begrenzte Derivationen und deren Anwendung
-
A. K. Grünwald, Über begrenzte Derivationen und deren Anwendung, Z. Angew. Math. Phys. 12, 441-480 (1867).
-
(1867)
Z. Angew. Math. Phys.
, vol.12
, pp. 441-480
-
-
Grünwald, A.K.1
-
18
-
-
33747286487
-
The time fractional diffusion and advection-dispersion equation
-
F. Huang and F. Liu, The time fractional diffusion and advection-dispersion equation, ANZIAM J. 46, 317-330 (2005).
-
(2005)
ANZIAM J.
, vol.46
, pp. 317-330
-
-
Huang, F.1
Liu, F.2
-
19
-
-
0035643602
-
The $ {\cal H}^{\infty } $ calculus and sums of closed operators
-
N. Kalton and L. Weis, The $ {\cal H}^{\infty } $ calculus and sums of closed operators, Math. Ann. 321, 319-345 (2001).
-
(2001)
Math. Ann.
, vol.321
, pp. 319-345
-
-
Kalton, N.1
Weis, L.2
-
20
-
-
33646491036
-
Periodic solutions of second order differential equations in Banach spaces
-
V. Keyantuo and C. Lizama, Periodic solutions of second order differential equations in Banach spaces, Math. Z. 253, 489-514 (2006).
-
(2006)
Math. Z.
, vol.253
, pp. 489-514
-
-
Keyantuo, V.1
Lizama, C.2
-
21
-
-
77956684069
-
Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies
-
Elsevier, Amsterdam.
-
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies Vol. 204 (Elsevier, Amsterdam, 2006).
-
(2006)
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
22
-
-
1242327688
-
Differential equations of fractional order: methods, results and problems I
-
A. A. Kilbas and J. J. Trujillo, Differential equations of fractional order: methods, results and problems I, Appl. Anal. 78(1-2), 153-192 (2001).
-
(2001)
Appl. Anal.
, vol.78
, Issue.1-2
, pp. 153-192
-
-
Kilbas, A.A.1
Trujillo, J.J.2
-
23
-
-
25144514177
-
Differential equations of fractional order: Methods, results and problems II
-
A. A. Kilbas and J. J. Trujillo, Differential equations of fractional order: Methods, results and problems II, Appl. Anal. 81(2), 435-493 (2002).
-
(2002)
Appl. Anal.
, vol.81
, Issue.2
, pp. 435-493
-
-
Kilbas, A.A.1
Trujillo, J.J.2
-
24
-
-
27744500223
-
Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives
-
M. Kirane, Y. Laskri, and N.-e. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl. 312, 488-501 (2005).
-
(2005)
J. Math. Anal. Appl.
, vol.312
, pp. 488-501
-
-
Kirane, M.1
Laskri, Y.2
Tatar, N.-e.3
-
25
-
-
30044444006
-
On the stability of the Maxey-Riley equation in nonuniform linear flows
-
M. H. Kobayashi and C. F. M. Coimbra, On the stability of the Maxey-Riley equation in nonuniform linear flows, Phys. Fluids 17(11), 3301-3314 (2005).
-
(2005)
Phys. Fluids
, vol.17
, Issue.11
, pp. 3301-3314
-
-
Kobayashi, M.H.1
Coimbra, C.F.M.2
-
26
-
-
0000332009
-
Fractional order diffusion
-
A. N. Kochubei, Fractional order diffusion, J. Differ. Equations 26, 485-492 (1990).
-
(1990)
J. Differ. Equations
, vol.26
, pp. 485-492
-
-
Kochubei, A.N.1
-
27
-
-
10844270442
-
Application of fractional calculus to fluid mechanics
-
V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng. 124, 803-806 (2002).
-
(2002)
J. Fluids Eng.
, vol.124
, pp. 803-806
-
-
Kulish, V.V.1
Lage, J.L.2
-
28
-
-
0001936243
-
Theory and differentiation of fractional order
-
A. V. Letnikov, Theory and differentiation of fractional order, Mat. Sb. 3, 1-66 (1868).
-
(1868)
Mat. Sb.
, vol.3
, pp. 1-66
-
-
Letnikov, A.V.1
-
29
-
-
0348230399
-
Time fractional advection-dispersion equation
-
F. Liu, V. Anh, I. Turner, and P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comput. 13, 233-246 (2003).
-
(2003)
J. Appl. Math. Comput.
, vol.13
, pp. 233-246
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
30
-
-
0001983732
-
Fractals and Fractional Calculus in Continuum Mechanics
-
in:, edited by A. Carpinteri and F. Mainardi (Springer Verlag, Wien, -
-
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi (Springer Verlag, Wien, 1997), pp. 291-348.
-
(1997)
Fractional calculus: some basic problems in continuum and statistical mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
31
-
-
79952077748
-
-
The Theory of Fractional Powers of Operators, Math. Studies North-Holland.
-
C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators, Math. Studies Vol. 187 (North-Holland, 2002).
-
(2002)
, vol.187
-
-
Martinez, C.1
Sanz, M.2
-
32
-
-
0020572570
-
Equation of motion for a small rigid sphere in a nonuniform flow
-
M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26, 883-889 (1983).
-
(1983)
Phys. Fluids
, vol.26
, pp. 883-889
-
-
Maxey, M.R.1
Riley, J.J.2
-
33
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamic approach
-
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamic approach, Phys. Rep. 339, 1-77 (2000).
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
34
-
-
0003492056
-
An Introduction to the Fractional Calculus and Fractional Differential Equations
-
(John Wiley & Sons Inc., New York).
-
K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons Inc., New York, 1993).
-
(1993)
-
-
Miller, K.1
Ross, B.2
-
35
-
-
0010800371
-
Random walks in multidimensional spaces, especially on periodic lattices
-
E. W. Montroll, Random walks in multidimensional spaces, especially on periodic lattices, J. SIAM 4(4), 241-260 (1956).
-
(1956)
J. SIAM
, vol.4
, Issue.4
, pp. 241-260
-
-
Montroll, E.W.1
-
36
-
-
0004182814
-
The Fractional Calculus
-
(Academic Press, New York, London).
-
K. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York, London, 1974).
-
(1974)
-
-
Oldham, K.1
Spanier, J.2
-
37
-
-
0033872505
-
Introduction to fractional linear systems. Part 1: Continuous-time case
-
M. Ortigueira, Introduction to fractional linear systems. Part 1: Continuous-time case, IEE Proc. Vision Image Signal Process. 147(1), 62-70 (2000).
-
(2000)
IEE Proc. Vision Image Signal Process.
, vol.147
, Issue.1
, pp. 62-70
-
-
Ortigueira, M.1
-
38
-
-
0033899008
-
Introduction to fractional linear systems. Part 2: Discrete-time case
-
M. Ortigueira, Introduction to fractional linear systems. Part 2: Discrete-time case, IEE Proceedings Vision, Image, Signal Process. 147(1), 71-78 (2000).
-
(2000)
IEE Proceedings Vision, Image, Signal Process.
, vol.147
, Issue.1
, pp. 71-78
-
-
Ortigueira, M.1
-
39
-
-
0006972557
-
Functions that have no first order derivative might have fractional derivatives of all orders less than one
-
95.
-
B. Ross, S. G. Samko, and E. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one, Real Anal. Exch. 20, 140-157 (1994/95).
-
(1994)
Real Anal. Exch.
, vol.20
, pp. 140-157
-
-
Ross, B.1
Samko, S.G.2
Love, E.3
-
40
-
-
79952084357
-
-
Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Yverdon, 1993).
-
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Yverdon, 1993).
-
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
41
-
-
0001553919
-
Fractional diffusion and wave equations
-
W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30, 134-144 (1989).
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
42
-
-
21244457230
-
Fractional generalization of gradient and Hamiltonian systems
-
V. E. Tarasov, Fractional generalization of gradient and Hamiltonian systems, J. Phys. A 38, 5929-5943 (2005).
-
(2005)
J. Phys. A
, vol.38
, pp. 5929-5943
-
-
Tarasov, V.E.1
-
43
-
-
0035629005
-
p-regularity
-
p-regularity, Math. Ann. 319, 735-758 (2001).
-
(2001)
Math. Ann.
, vol.319
, pp. 735-758
-
-
Weis, L.1
-
44
-
-
0009481303
-
The fractional diffusion equation
-
W. Wyss, The fractional diffusion equation, J. Math. Phys. 27, 2782-2785 (1986).
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wyss, W.1
-
45
-
-
43949160116
-
Fractional kinetic equation for Hamiltonian chaos, Chaotic advection, tracer dynamics and turbulent dispersion
-
G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Chaotic advection, tracer dynamics and turbulent dispersion, Phys. D 76, 110-122 (1994).
-
(1994)
Phys. D
, vol.76
, pp. 110-122
-
-
Zaslavsky, G.1
-
46
-
-
44349168191
-
-
Moment analysis for spatiotemporal fractional dispersion, Water Resour. Res. 44 W04424. doi: 10.1029/2007 WR 006291.
-
Y. Zhang, D. A. Benson, and B. Baeumer, Moment analysis for spatiotemporal fractional dispersion, Water Resour. Res. 44 W04424. doi: 10.1029/2007 WR 006291.
-
-
-
Zhang, Y.1
Benson, D.A.2
Baeumer, B.3
-
47
-
-
0003765696
-
Trigonometrical Series
-
Cambridge University Press.
-
A. Zygmund, Trigonometrical Series (Cambridge University Press, 1959).
-
(1959)
-
-
Zygmund, A.1
|