-
5
-
-
0000826626
-
Long-time-correlation effects and biased anomalous diffusion
-
K.G. Wang Long-time-correlation effects and biased anomalous diffusion Phys. Rev. A 45 1992 833 837
-
(1992)
Phys. Rev. A
, vol.45
, pp. 833-837
-
-
Wang, K.G.1
-
6
-
-
0000222069
-
Generalized Langevin equations: Anomalous diffusion and probability distributions
-
J.M. Porra, K.G. Wang, and J. Masoliver Generalized Langevin equations: anomalous diffusion and probability distributions Phys. Rev. E 53 1996 5872 5881 (Pubitemid 126584157)
-
(1996)
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
, vol.53
, Issue.6 SUPPL. A
, pp. 5872-5881
-
-
Porra, J.M.1
Wang, K.-G.2
Masoliver, J.3
-
7
-
-
0032625656
-
Nonequilibrium statistical description of anomalous diffusion
-
K.G. Wang, and M. Tokuyama Nonequilibrium statistical description of anomalous diffusion Physica A 265 1999 341 351
-
(1999)
Physica A
, vol.265
, pp. 341-351
-
-
Wang, K.G.1
Tokuyama, M.2
-
8
-
-
0035509430
-
Fractional Langevin equation
-
E. Lutz Fractional Langevin equation Phys. Rev. E 64 2001 051106
-
(2001)
Phys. Rev. e
, vol.64
, pp. 051106
-
-
Lutz, E.1
-
9
-
-
33745464287
-
Generalized Langevin equation with fractional derivative and long-time correlation function
-
K.S. Fa Generalized Langevin equation with fractional derivative and long-time correlation function Phys. Rev. E 73 2006 061104
-
(2006)
Phys. Rev. e
, vol.73
, pp. 061104
-
-
Fa, K.S.1
-
10
-
-
36749074902
-
Fractional Langevin equation and Riemann-Liouville fractional derivative
-
DOI 10.1140/epje/i2007-10224-2
-
K.S. Fa Fractional Langevin equation and RiemannLiouville fractional derivative Eur. Phys. J. E 24 2007 139 143 (Pubitemid 350212092)
-
(2007)
European Physical Journal E
, vol.24
, Issue.2
, pp. 139-143
-
-
Fa, K.S.1
-
11
-
-
0034414111
-
Fractional Langevin equation to describe anomalous diffusion
-
V. Kobolev, and E. Romanov Fractional Langevin equation to describe anomalous diffusion Prog. Theor. Phys. Suppl. 139 2000 470 476
-
(2000)
Prog. Theor. Phys. Suppl.
, vol.139
, pp. 470-476
-
-
Kobolev, V.1
Romanov, E.2
-
12
-
-
41349104439
-
Self-similar Gaussian processes for modeling anomalous diffusion
-
S.C. Lim, and S.V. Muniandy Self-similar Gaussian processes for modeling anomalous diffusion Phys. Rev. E 66 2002 021114
-
(2002)
Phys. Rev. e
, vol.66
, pp. 021114
-
-
Lim, S.C.1
Muniandy, S.V.2
-
13
-
-
45849155458
-
Fractional Langevin model of memory in financial markets
-
S. Picozzi, and B. West Fractional Langevin model of memory in financial markets Phys. Rev. E 66 2002 046118
-
(2002)
Phys. Rev. e
, vol.66
, pp. 046118
-
-
Picozzi, S.1
West, B.2
-
14
-
-
34547313503
-
Locally self-similar fractional oscillator processes
-
S.C. Lim, M. Li, and L.P. Teo Locally self-similar fractional oscillator processes Fluct. Noise Lett. 7 2007 169 179
-
(2007)
Fluct. Noise Lett.
, vol.7
, pp. 169-179
-
-
Lim, S.C.1
Li, M.2
Teo, L.P.3
-
15
-
-
0038147098
-
Diffusion and memory effects for stochastic processes and fractional Langevin equations
-
A. Bazzani, Gabriele Bassi, and G. Turchetti Diffusion and memory effects for stochastic processes and fractional Langevin equations Physica A 324 2003 530 550
-
(2003)
Physica A
, vol.324
, pp. 530-550
-
-
Bazzani, A.1
Bassi, G.2
Turchetti, G.3
-
16
-
-
19744382497
-
Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
-
S.C. Kou, and X. Sunney Xie Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule Phys. Rev. Lett. 93 2004 180603
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 180603
-
-
Kou, S.C.1
Xie, X.S.2
-
18
-
-
35348992085
-
Langevin approach to fractional diffusion equations including inertial effects
-
DOI 10.1021/jp072173h
-
S. Eule, R. Friedrich, F. Jenko, and D. Kleinhans Langevin approach to fractional diffusion equations including inertial effects J. Phys. Chem. B 111 39 2007 11474 11477 (Pubitemid 47598330)
-
(2007)
Journal of Physical Chemistry B
, vol.111
, Issue.39
, pp. 11474-11477
-
-
Eule, S.1
Friedrich, R.2
Jenko, F.3
Kleinhans, D.4
-
19
-
-
56849094437
-
Equivalence of the fractional FokkerPlanck and subordinated Langevin equations: The case of a time-dependent force
-
M. Magdziarz, and A. Weron Equivalence of the fractional FokkerPlanck and subordinated Langevin equations: the case of a time-dependent force Phys. Rev. Lett. 101 2008 210601
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 210601
-
-
Magdziarz, M.1
Weron, A.2
-
20
-
-
52349118652
-
Langevin equation with two fractional orders
-
S.C. Lim, M. Li, and L.P. Teo Langevin equation with two fractional orders Phys. Lett. A 372 2008 6309 6320
-
(2008)
Phys. Lett. A
, vol.372
, pp. 6309-6320
-
-
Lim, S.C.1
Li, M.2
Teo, L.P.3
-
21
-
-
64549125064
-
The fractional oscillator process with two indices
-
34 pages
-
S.C. Lim, and L.P. Teo The fractional oscillator process with two indices J. Phys. A: Math. Theor. 42 2009 065208 34 pages
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 065208
-
-
Lim, S.C.1
Teo, L.P.2
-
22
-
-
77956906008
-
Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions
-
Art. ID 649486
-
B. Ahmad, and J.J. Nieto Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions Int. J. Difference Equ. 2010 10 Art. ID 649486
-
(2010)
Int. J. Difference Equ.
, pp. 10
-
-
Ahmad, B.1
Nieto, J.J.2
-
23
-
-
78649669022
-
Generalized Langevin equation revisited: Mechanical random force and self-consistent structure
-
Art. ID 455003
-
M. Uranagase, and T. Munakata Generalized Langevin equation revisited: mechanical random force and self-consistent structure J. Phys. A: Math. Theor. 43 2010 11 Art. ID 455003
-
(2010)
J. Phys. A: Math. Theor.
, vol.43
, pp. 11
-
-
Uranagase, M.1
Munakata, T.2
-
24
-
-
77953735241
-
Langevin equation with super-heavy-tailed noise
-
Art. ID 285004
-
S.I. Denisov, H. Kantz, and P. Hnggi Langevin equation with super-heavy-tailed noise J. Phys. A: Math. Theor. 43 2010 10 Art. ID 285004
-
(2010)
J. Phys. A: Math. Theor.
, vol.43
, pp. 10
-
-
Denisov, S.I.1
Kantz, H.2
Hnggi, P.3
-
26
-
-
77952338160
-
Foundation of fractional Langevin equation: Harmonization of a many-body problem
-
Art. ID 051118
-
L. Lizana, T. Ambjörnsson, A. Taloni, E. Barkai, and M.A. Lomholt Foundation of fractional Langevin equation: harmonization of a many-body problem Phys. Rev. E 81 2010 8 Art. ID 051118
-
(2010)
Phys. Rev. e
, vol.81
, pp. 8
-
-
Lizana, L.1
Ambjörnsson, T.2
Taloni, A.3
Barkai, E.4
Lomholt, M.A.5
-
31
-
-
79960975255
-
On Riemann and Caputo fractional differences
-
T. Abdeljawad On Riemann and Caputo fractional differences Comput. Math. Appl. 62 2011 1602 1611
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1602-1611
-
-
Abdeljawad, T.1
-
32
-
-
79960269969
-
Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function
-
T. Abdeljawad, and D. Baleanu Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function Commun. Nonlinear Sci. Numer. Simul. 16 2011 4682 4688
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 4682-4688
-
-
Abdeljawad, T.1
Baleanu, D.2
-
33
-
-
79952536080
-
Solution of a fractional transport equation by using the generalized quadratic form
-
A. Kadem, and D. Baleanu Solution of a fractional transport equation by using the generalized quadratic form Commun. Nonlinear Sci. Numer. Simul. 16 2011 3011 3014
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 3011-3014
-
-
Kadem, A.1
Baleanu, D.2
-
35
-
-
79251567943
-
Fractional-order variational calculus with generalized boundary conditions
-
Art. No. 357580, 9 pages
-
D. Baleanu, and M.A.E. Herzallah Fractional-order variational calculus with generalized boundary conditions Adv. Difference Equ. 2011 Art. No. 357580, 9 pages
-
(2011)
Adv. Difference Equ.
-
-
Baleanu, D.1
Herzallah, M.A.E.2
-
36
-
-
50849097037
-
Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives
-
Art. No. 083507, 11 pp
-
T. Maraaba, D. Baleanu, and F. Jarad Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives J. Math. Phys. 49 2008 Art. No. 083507, 11 pp
-
(2008)
J. Math. Phys.
, vol.49
-
-
Maraaba, T.1
Baleanu, D.2
Jarad, F.3
-
37
-
-
58149145450
-
Finite-time stability analysis of fractional order time delay systems: Gronwall's approach
-
M.P. Lazarevic, and A.M. Spasic Finite-time stability analysis of fractional order time delay systems: Gronwall's approach Math. Comput. Modelling 49 2009 475 481
-
(2009)
Math. Comput. Modelling
, vol.49
, pp. 475-481
-
-
Lazarevic, M.P.1
Spasic, A.M.2
-
38
-
-
34247323827
-
Fractional differential equations as alternative models to nonlinear differential equations
-
DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
-
B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo Fractional differential equations as alternative models to nonlinear differential equations Appl. Math. Comput. 187 2007 79 88 (Pubitemid 46635706)
-
(2007)
Applied Mathematics and Computation
, vol.187
, Issue.1 SPEC. ISS.
, pp. 79-88
-
-
Bonilla, B.1
Rivero, M.2
Rodriguez-Germa, L.3
Trujillo, J.J.4
-
40
-
-
68949086378
-
Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations
-
Art. ID 494720
-
B. Ahmad, and J.J. Nieto Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations Abstr. Appl. Anal. 2009 9 Art. ID 494720
-
(2009)
Abstr. Appl. Anal.
, pp. 9
-
-
Ahmad, B.1
Nieto, J.J.2
-
41
-
-
70349131961
-
Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
-
B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 1838-1843
-
-
Ahmad, B.1
Nieto, J.J.2
-
42
-
-
76749131977
-
Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations
-
B. Ahmad Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations Appl. Math. Lett. 23 2010 390 394
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 390-394
-
-
Ahmad, B.1
-
43
-
-
77953135670
-
Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order
-
M. El-Shahed, and Juan J. Nieto Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order Comput. Math. Appl. 59 2010 3438 3443
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3438-3443
-
-
El-Shahed, M.1
Nieto, J.J.2
-
45
-
-
67649494324
-
Entropies based on fractional calculus
-
M.R. Ubriaco Entropies based on fractional calculus Phys. Lett. A 373 2009 2516 2519
-
(2009)
Phys. Lett. A
, vol.373
, pp. 2516-2519
-
-
Ubriaco, M.R.1
-
46
-
-
77955429536
-
Maximum principles for fractional differential equations derived from Mittag-Leffler functions
-
J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 1248-1251
-
-
Nieto, J.J.1
-
47
-
-
77953683625
-
An existence result for a superlinear fractional differential equation
-
D. Baleanu, O.G. Mustafa, and R.P. Agarwal An existence result for a superlinear fractional differential equation Appl. Math. Lett. 23 2010 1129 1132
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 1129-1132
-
-
Baleanu, D.1
Mustafa, O.G.2
Agarwal, R.P.3
-
48
-
-
78149286185
-
Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
-
G. Wang, B. Ahmad, and L. Zhang Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order Nonlinear Anal. 74 2011 792 804
-
(2011)
Nonlinear Anal.
, vol.74
, pp. 792-804
-
-
Wang, G.1
Ahmad, B.2
Zhang, L.3
-
51
-
-
78751562056
-
Asymptotic integration of some nonlinear differential equations with fractional time derivative
-
Art. ID 055203
-
D. Baleanu, R.P. Agarwal, O.G. Mustafa, and M. Cosulschi Asymptotic integration of some nonlinear differential equations with fractional time derivative J. Phys. A: Math. Theor. 44 2011 Art. ID 055203
-
(2011)
J. Phys. A: Math. Theor.
, vol.44
-
-
Baleanu, D.1
Agarwal, R.P.2
Mustafa, O.G.3
Cosulschi, M.4
|