메뉴 건너뛰기




Volumn 13, Issue 2, 2012, Pages 599-606

A study of nonlinear Langevin equation involving two fractional orders in different intervals

Author keywords

Existence; Fixed point; Fractional order; Langevin equation; Three point boundary conditions

Indexed keywords

EXISTENCE; FIXED POINTS; FRACTIONAL ORDER; LANGEVIN EQUATION; THREE-POINT BOUNDARY CONDITIONS;

EID: 80054946851     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2011.07.052     Document Type: Article
Times cited : (248)

References (52)
  • 5
    • 0000826626 scopus 로고
    • Long-time-correlation effects and biased anomalous diffusion
    • K.G. Wang Long-time-correlation effects and biased anomalous diffusion Phys. Rev. A 45 1992 833 837
    • (1992) Phys. Rev. A , vol.45 , pp. 833-837
    • Wang, K.G.1
  • 7
    • 0032625656 scopus 로고    scopus 로고
    • Nonequilibrium statistical description of anomalous diffusion
    • K.G. Wang, and M. Tokuyama Nonequilibrium statistical description of anomalous diffusion Physica A 265 1999 341 351
    • (1999) Physica A , vol.265 , pp. 341-351
    • Wang, K.G.1    Tokuyama, M.2
  • 8
    • 0035509430 scopus 로고    scopus 로고
    • Fractional Langevin equation
    • E. Lutz Fractional Langevin equation Phys. Rev. E 64 2001 051106
    • (2001) Phys. Rev. e , vol.64 , pp. 051106
    • Lutz, E.1
  • 9
    • 33745464287 scopus 로고    scopus 로고
    • Generalized Langevin equation with fractional derivative and long-time correlation function
    • K.S. Fa Generalized Langevin equation with fractional derivative and long-time correlation function Phys. Rev. E 73 2006 061104
    • (2006) Phys. Rev. e , vol.73 , pp. 061104
    • Fa, K.S.1
  • 10
    • 36749074902 scopus 로고    scopus 로고
    • Fractional Langevin equation and Riemann-Liouville fractional derivative
    • DOI 10.1140/epje/i2007-10224-2
    • K.S. Fa Fractional Langevin equation and RiemannLiouville fractional derivative Eur. Phys. J. E 24 2007 139 143 (Pubitemid 350212092)
    • (2007) European Physical Journal E , vol.24 , Issue.2 , pp. 139-143
    • Fa, K.S.1
  • 11
    • 0034414111 scopus 로고    scopus 로고
    • Fractional Langevin equation to describe anomalous diffusion
    • V. Kobolev, and E. Romanov Fractional Langevin equation to describe anomalous diffusion Prog. Theor. Phys. Suppl. 139 2000 470 476
    • (2000) Prog. Theor. Phys. Suppl. , vol.139 , pp. 470-476
    • Kobolev, V.1    Romanov, E.2
  • 12
    • 41349104439 scopus 로고    scopus 로고
    • Self-similar Gaussian processes for modeling anomalous diffusion
    • S.C. Lim, and S.V. Muniandy Self-similar Gaussian processes for modeling anomalous diffusion Phys. Rev. E 66 2002 021114
    • (2002) Phys. Rev. e , vol.66 , pp. 021114
    • Lim, S.C.1    Muniandy, S.V.2
  • 13
    • 45849155458 scopus 로고    scopus 로고
    • Fractional Langevin model of memory in financial markets
    • S. Picozzi, and B. West Fractional Langevin model of memory in financial markets Phys. Rev. E 66 2002 046118
    • (2002) Phys. Rev. e , vol.66 , pp. 046118
    • Picozzi, S.1    West, B.2
  • 14
    • 34547313503 scopus 로고    scopus 로고
    • Locally self-similar fractional oscillator processes
    • S.C. Lim, M. Li, and L.P. Teo Locally self-similar fractional oscillator processes Fluct. Noise Lett. 7 2007 169 179
    • (2007) Fluct. Noise Lett. , vol.7 , pp. 169-179
    • Lim, S.C.1    Li, M.2    Teo, L.P.3
  • 15
    • 0038147098 scopus 로고    scopus 로고
    • Diffusion and memory effects for stochastic processes and fractional Langevin equations
    • A. Bazzani, Gabriele Bassi, and G. Turchetti Diffusion and memory effects for stochastic processes and fractional Langevin equations Physica A 324 2003 530 550
    • (2003) Physica A , vol.324 , pp. 530-550
    • Bazzani, A.1    Bassi, G.2    Turchetti, G.3
  • 16
    • 19744382497 scopus 로고    scopus 로고
    • Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule
    • S.C. Kou, and X. Sunney Xie Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule Phys. Rev. Lett. 93 2004 180603
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 180603
    • Kou, S.C.1    Xie, X.S.2
  • 17
    • 25444463093 scopus 로고    scopus 로고
    • Fractional Langevin model of gait variability
    • DOI 10.1186/1743-0003-2-24
    • B.J. West, and M. Latka Fractional Langevin model of gait variability J. Neuro Eng. Rehabil. 24 2 2005 10.1186/1743-0003-2-24 9 pages (Pubitemid 41364608)
    • (2005) Journal of NeuroEngineering and Rehabilitation , vol.2 , pp. 24
    • West, B.J.1    Latka, M.2
  • 18
    • 35348992085 scopus 로고    scopus 로고
    • Langevin approach to fractional diffusion equations including inertial effects
    • DOI 10.1021/jp072173h
    • S. Eule, R. Friedrich, F. Jenko, and D. Kleinhans Langevin approach to fractional diffusion equations including inertial effects J. Phys. Chem. B 111 39 2007 11474 11477 (Pubitemid 47598330)
    • (2007) Journal of Physical Chemistry B , vol.111 , Issue.39 , pp. 11474-11477
    • Eule, S.1    Friedrich, R.2    Jenko, F.3    Kleinhans, D.4
  • 19
    • 56849094437 scopus 로고    scopus 로고
    • Equivalence of the fractional FokkerPlanck and subordinated Langevin equations: The case of a time-dependent force
    • M. Magdziarz, and A. Weron Equivalence of the fractional FokkerPlanck and subordinated Langevin equations: the case of a time-dependent force Phys. Rev. Lett. 101 2008 210601
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 210601
    • Magdziarz, M.1    Weron, A.2
  • 20
    • 52349118652 scopus 로고    scopus 로고
    • Langevin equation with two fractional orders
    • S.C. Lim, M. Li, and L.P. Teo Langevin equation with two fractional orders Phys. Lett. A 372 2008 6309 6320
    • (2008) Phys. Lett. A , vol.372 , pp. 6309-6320
    • Lim, S.C.1    Li, M.2    Teo, L.P.3
  • 21
    • 64549125064 scopus 로고    scopus 로고
    • The fractional oscillator process with two indices
    • 34 pages
    • S.C. Lim, and L.P. Teo The fractional oscillator process with two indices J. Phys. A: Math. Theor. 42 2009 065208 34 pages
    • (2009) J. Phys. A: Math. Theor. , vol.42 , pp. 065208
    • Lim, S.C.1    Teo, L.P.2
  • 22
    • 77956906008 scopus 로고    scopus 로고
    • Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions
    • Art. ID 649486
    • B. Ahmad, and J.J. Nieto Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions Int. J. Difference Equ. 2010 10 Art. ID 649486
    • (2010) Int. J. Difference Equ. , pp. 10
    • Ahmad, B.1    Nieto, J.J.2
  • 23
    • 78649669022 scopus 로고    scopus 로고
    • Generalized Langevin equation revisited: Mechanical random force and self-consistent structure
    • Art. ID 455003
    • M. Uranagase, and T. Munakata Generalized Langevin equation revisited: mechanical random force and self-consistent structure J. Phys. A: Math. Theor. 43 2010 11 Art. ID 455003
    • (2010) J. Phys. A: Math. Theor. , vol.43 , pp. 11
    • Uranagase, M.1    Munakata, T.2
  • 24
    • 77953735241 scopus 로고    scopus 로고
    • Langevin equation with super-heavy-tailed noise
    • Art. ID 285004
    • S.I. Denisov, H. Kantz, and P. Hnggi Langevin equation with super-heavy-tailed noise J. Phys. A: Math. Theor. 43 2010 10 Art. ID 285004
    • (2010) J. Phys. A: Math. Theor. , vol.43 , pp. 10
    • Denisov, S.I.1    Kantz, H.2    Hnggi, P.3
  • 26
    • 77952338160 scopus 로고    scopus 로고
    • Foundation of fractional Langevin equation: Harmonization of a many-body problem
    • Art. ID 051118
    • L. Lizana, T. Ambjörnsson, A. Taloni, E. Barkai, and M.A. Lomholt Foundation of fractional Langevin equation: harmonization of a many-body problem Phys. Rev. E 81 2010 8 Art. ID 051118
    • (2010) Phys. Rev. e , vol.81 , pp. 8
    • Lizana, L.1    Ambjörnsson, T.2    Taloni, A.3    Barkai, E.4    Lomholt, M.A.5
  • 31
    • 79960975255 scopus 로고    scopus 로고
    • On Riemann and Caputo fractional differences
    • T. Abdeljawad On Riemann and Caputo fractional differences Comput. Math. Appl. 62 2011 1602 1611
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1602-1611
    • Abdeljawad, T.1
  • 32
    • 79960269969 scopus 로고    scopus 로고
    • Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function
    • T. Abdeljawad, and D. Baleanu Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function Commun. Nonlinear Sci. Numer. Simul. 16 2011 4682 4688
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 4682-4688
    • Abdeljawad, T.1    Baleanu, D.2
  • 33
    • 79952536080 scopus 로고    scopus 로고
    • Solution of a fractional transport equation by using the generalized quadratic form
    • A. Kadem, and D. Baleanu Solution of a fractional transport equation by using the generalized quadratic form Commun. Nonlinear Sci. Numer. Simul. 16 2011 3011 3014
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , pp. 3011-3014
    • Kadem, A.1    Baleanu, D.2
  • 34
    • 79956223884 scopus 로고    scopus 로고
    • Fractional time action and perturbed gravity
    • M. Sadallah, S.I. Muslih, D. Baleanu, and E. Rabei Fractional time action and perturbed gravity Fractals 19 2011 243 247
    • (2011) Fractals , vol.19 , pp. 243-247
    • Sadallah, M.1    Muslih, S.I.2    Baleanu, D.3    Rabei, E.4
  • 35
    • 79251567943 scopus 로고    scopus 로고
    • Fractional-order variational calculus with generalized boundary conditions
    • Art. No. 357580, 9 pages
    • D. Baleanu, and M.A.E. Herzallah Fractional-order variational calculus with generalized boundary conditions Adv. Difference Equ. 2011 Art. No. 357580, 9 pages
    • (2011) Adv. Difference Equ.
    • Baleanu, D.1    Herzallah, M.A.E.2
  • 36
    • 50849097037 scopus 로고    scopus 로고
    • Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives
    • Art. No. 083507, 11 pp
    • T. Maraaba, D. Baleanu, and F. Jarad Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives J. Math. Phys. 49 2008 Art. No. 083507, 11 pp
    • (2008) J. Math. Phys. , vol.49
    • Maraaba, T.1    Baleanu, D.2    Jarad, F.3
  • 37
    • 58149145450 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order time delay systems: Gronwall's approach
    • M.P. Lazarevic, and A.M. Spasic Finite-time stability analysis of fractional order time delay systems: Gronwall's approach Math. Comput. Modelling 49 2009 475 481
    • (2009) Math. Comput. Modelling , vol.49 , pp. 475-481
    • Lazarevic, M.P.1    Spasic, A.M.2
  • 38
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
    • B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo Fractional differential equations as alternative models to nonlinear differential equations Appl. Math. Comput. 187 2007 79 88 (Pubitemid 46635706)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.1 SPEC. ISS. , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germa, L.3    Trujillo, J.J.4
  • 40
    • 68949086378 scopus 로고    scopus 로고
    • Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations
    • Art. ID 494720
    • B. Ahmad, and J.J. Nieto Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations Abstr. Appl. Anal. 2009 9 Art. ID 494720
    • (2009) Abstr. Appl. Anal. , pp. 9
    • Ahmad, B.1    Nieto, J.J.2
  • 41
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 42
    • 76749131977 scopus 로고    scopus 로고
    • Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations
    • B. Ahmad Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations Appl. Math. Lett. 23 2010 390 394
    • (2010) Appl. Math. Lett. , vol.23 , pp. 390-394
    • Ahmad, B.1
  • 43
    • 77953135670 scopus 로고    scopus 로고
    • Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order
    • M. El-Shahed, and Juan J. Nieto Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order Comput. Math. Appl. 59 2010 3438 3443
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3438-3443
    • El-Shahed, M.1    Nieto, J.J.2
  • 45
    • 67649494324 scopus 로고    scopus 로고
    • Entropies based on fractional calculus
    • M.R. Ubriaco Entropies based on fractional calculus Phys. Lett. A 373 2009 2516 2519
    • (2009) Phys. Lett. A , vol.373 , pp. 2516-2519
    • Ubriaco, M.R.1
  • 46
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 47
    • 77953683625 scopus 로고    scopus 로고
    • An existence result for a superlinear fractional differential equation
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal An existence result for a superlinear fractional differential equation Appl. Math. Lett. 23 2010 1129 1132
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1129-1132
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 48
    • 78149286185 scopus 로고    scopus 로고
    • Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
    • G. Wang, B. Ahmad, and L. Zhang Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order Nonlinear Anal. 74 2011 792 804
    • (2011) Nonlinear Anal. , vol.74 , pp. 792-804
    • Wang, G.1    Ahmad, B.2    Zhang, L.3
  • 50
  • 51
    • 78751562056 scopus 로고    scopus 로고
    • Asymptotic integration of some nonlinear differential equations with fractional time derivative
    • Art. ID 055203
    • D. Baleanu, R.P. Agarwal, O.G. Mustafa, and M. Cosulschi Asymptotic integration of some nonlinear differential equations with fractional time derivative J. Phys. A: Math. Theor. 44 2011 Art. ID 055203
    • (2011) J. Phys. A: Math. Theor. , vol.44
    • Baleanu, D.1    Agarwal, R.P.2    Mustafa, O.G.3    Cosulschi, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.