메뉴 건너뛰기




Volumn 446, Issue , 2013, Pages 139-147

Data science and distributed intelligence: Recent developments and future insights

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84867948511     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-32524-3_18     Document Type: Article
Times cited : (5)

References (30)
  • 1
    • 79957809015 scopus 로고    scopus 로고
    • Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads
    • Abouzeid, A., et al.: Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads. PVLDB 2(1), 922-933 (2009)
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 922-933
    • Abouzeid, A.1
  • 2
    • 79953844445 scopus 로고    scopus 로고
    • Big data and cloud computing: Current state and future opportunities
    • Agrawal, D., Das, S., Abbadi, A.E.: Big data and cloud computing: current state and future opportunities. In: EDBT, pp. 530-533 (2011)
    • (2011) EDBT , pp. 530-533
    • Agrawal, D.1    Das, S.2    Abbadi, A.E.3
  • 3
    • 84867955100 scopus 로고    scopus 로고
    • Apache July
    • Apache. Hadoop (July 2011), http://wiki.apache.org/hadoop
    • (2011) Hadoop
  • 5
    • 56049109090 scopus 로고    scopus 로고
    • Map-reduce for machine learning on multicore
    • Chu, C.-T., et al.: Map-reduce for machine learning on multicore. In: NIPS, pp. 281-288 (2006)
    • (2006) NIPS , pp. 281-288
    • Chu, C.-T.1
  • 6
    • 84868307166 scopus 로고    scopus 로고
    • Mad skills: New analysis practices for big data
    • Cohen, J., Dolan, B., Dunlap,M., Hellerstein, J.M.,Welton, C.:Mad skills: New analysis practices for big data. PVLDB 2(2), 1481-1492 (2009)
    • (2009) PVLDB , vol.2 , Issue.2 , pp. 1481-1492
    • Cohen, J.1    Dolan, B.2    Dunlap, M.3    Hellerstein, J.M.4    Welton, C.5
  • 7
    • 80052686089 scopus 로고    scopus 로고
    • Clustering very large multi-dimensional datasets with mapreduce
    • Cordeiro, R.L.F., et al.: Clustering very large multi-dimensional datasets with mapreduce. In: KDD, pp. 690-698 (2011)
    • (2011) KDD , pp. 690-698
    • Cordeiro, R.L.F.1
  • 8
    • 70349331247 scopus 로고    scopus 로고
    • CAMS: OLApingmultidimensional data streams efficiently
    • Pedersen, T.B.,Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009 Springer, Heidelberg
    • Cuzzocrea, A.: CAMS: OLAPingMultidimensional Data Streams Efficiently. In: Pedersen, T.B.,Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 48-62. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5691 , pp. 48-62
    • Cuzzocrea, A.1
  • 9
    • 79961179096 scopus 로고    scopus 로고
    • Retrieving accurate estimates to OLAP queries over uncertain and imprecise multidimensional data streams
    • Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011 Springer, Heidelberg
    • Cuzzocrea, A.: Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575-576. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6809 , pp. 575-576
    • Cuzzocrea, A.1
  • 10
    • 77955267031 scopus 로고    scopus 로고
    • Event-based lossy compression for effective and efficient olap over data streams
    • Cuzzocrea, A., Chakravarthy, S.: Event-based lossy compression for effective and efficient olap over data streams. Data Knowl. Eng. 69(7), 678-708 (2010)
    • (2010) Data Knowl. Eng. , vol.69 , Issue.7 , pp. 678-708
    • Cuzzocrea, A.1    Chakravarthy, S.2
  • 12
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107-113 (2008)
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 13
    • 80053521271 scopus 로고    scopus 로고
    • Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing)
    • Dittrich, J., Quiańe-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing). PVLDB 3(1), 518-529 (2010)
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 518-529
    • Dittrich, J.1    Quiańe-Ruiz, J.-A.2    Jindal, A.3    Kargin, Y.4    Setty, V.5    Schad, J.6
  • 14
    • 80052666000 scopus 로고    scopus 로고
    • Fast clustering using mapreduce
    • Ene, A., Im, S., Moseley, B.: Fast clustering using mapreduce. In: KDD, pp. 681-689 (2011)
    • (2011) KDD , pp. 681-689
    • Ene, A.1    Im, S.2    Moseley, B.3
  • 16
    • 65549139674 scopus 로고    scopus 로고
    • Data stream mining using granularity-based approach
    • Springer
    • Gaber, M.M.: Data stream mining using granularity-based approach. In: Foundations of Computational Intelligence, vol. (6), pp. 47-66. Springer (2009)
    • (2009) Foundations of Computational Intelligence , vol.6 , pp. 47-66
    • Gaber, M.M.1
  • 17
    • 80052651384 scopus 로고    scopus 로고
    • Nimble: A toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce
    • Ghoting, A., Kambadur, P., Pednault, E.P.D., Kannan, R.: Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce. In: KDD, pp. 334-342 (2011)
    • (2011) KDD , pp. 334-342
    • Ghoting, A.1    Kambadur, P.2    Pednault, E.P.D.3    Kannan, R.4
  • 18
    • 80455127184 scopus 로고    scopus 로고
    • Context-aware collaborative data stream mining in ubiquitous devices
    • Gama, J., Bradley, E., Hollḿen, J. (eds.) IDA 2011 Springer, Heidelberg
    • B́artolo Gomes, J., Gaber, M.M., Sousa, P.A.C.,Menasalvas, E.: Context-Aware Collaborative Data Stream Mining in Ubiquitous Devices. In: Gama, J., Bradley, E., Hollḿen, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 22-33. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.7014 , pp. 22-33
    • B́artolo Gomes, J.1    Gaber, M.M.2    Sousa, P.A.C.3    Menasalvas, E.4
  • 23
    • 84860287650 scopus 로고    scopus 로고
    • What is data science? the future belongs to the companies and people that turn data into products
    • June
    • Loukides, M.: What is data science? the future belongs to the companies and people that turn data into products. An OReilly Radar Report (June 2010)
    • (2010) An OReilly Radar Report
    • Loukides, M.1
  • 25
    • 67149126890 scopus 로고    scopus 로고
    • Disco: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining
    • Papadimitriou, S., Sun, J.: Disco: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining. In: ICDM, pp. 512-521 (2008)
    • (2008) ICDM , pp. 512-521
    • Papadimitriou, S.1    Sun, J.2
  • 26
    • 84867932247 scopus 로고    scopus 로고
    • Large-scale data mining: Mapreduce and beyond
    • July
    • Papadimitriou, S., Sun, J., Yan, R.: Large-scale data mining: Mapreduce and beyond. In: Tutorial in KDD (July 2010)
    • (2010) Tutorial in KDD
    • Papadimitriou, S.1    Sun, J.2    Yan, R.3
  • 27
    • 84867975873 scopus 로고    scopus 로고
    • Emerging trends in big data and analytics
    • London
    • Soulellis, G.: Emerging trends in big data and analytics. Big Data Innovation, London (2012)
    • (2012) Big Data Innovation
    • Soulellis, G.1
  • 28
    • 84856907983 scopus 로고    scopus 로고
    • Researchers' big data crisis; Understanding design and functionality
    • Stonebraker, M., Hong, J.: Researchers' big data crisis; understanding design and functionality. Commun. ACM 55(2), 10-11 (2012)
    • (2012) Commun. ACM , vol.55 , Issue.2 , pp. 10-11
    • Stonebraker, M.1    Hong, J.2
  • 30
    • 67049160138 scopus 로고    scopus 로고
    • Clustering distributed time series in sensor networks
    • Yin, J., Gaber, M.M.: Clustering distributed time series in sensor networks. In: ICDM, pp. 678-687 (2008)
    • (2008) ICDM , pp. 678-687
    • Yin, J.1    Gaber, M.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.