메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages 964-973

A physically segmented hidden markov model approach for continuous tool condition monitoring: Diagnostics and prognostics

Author keywords

Diagnostics; feature selection; hidden Markov model (HMM); prognostics; tool condition monitoring (TCM)

Indexed keywords

COMPUTER NUMERICAL CONTROL; CROSS VALIDATION; DIAGNOSTICS AND PROGNOSTICS; ELMAN NETWORK; EXPERIMENTAL STUDIES; HIDDEN STATE; HYPER-PARAMETER; MACHINERY SYSTEMS; MARKOV MODEL; MULTI LAYER PERCEPTRON; PROBABILISTIC APPROACHES; PROGNOSIS ABILITY; PROGNOSTICS; TOOL CONDITION MONITORING; TOOL WEAR;

EID: 84867928825     PISSN: 15513203     EISSN: None     Source Type: Journal    
DOI: 10.1109/TII.2012.2205583     Document Type: Article
Times cited : (111)

References (44)
  • 1
    • 79954497424 scopus 로고    scopus 로고
    • A simple real-time fault signature monitoring tool for motor-drive-embedded fault diagnosis systems
    • May
    • B. Akin, S. Choi, U.Orguner, and H. A. Toliyat, "A simple real-time fault signature monitoring tool for motor-drive-embedded fault diagnosis systems," IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1990-2001, May 2011.
    • (2011) IEEE Trans. Ind. Electron , vol.58 , Issue.5 , pp. 1990-2001
    • Akin, B.1    Choi, S.2    Orguner, U.3    Toliyat, H.A.4
  • 3
    • 84867939517 scopus 로고    scopus 로고
    • Feature extraction and selection in tool condition monitoring system
    • AI 2002: Advances in Artificial Intelligence
    • S. Jie, G. S. Hong, M. Rahman, and Y. S. Wong, "Feature extraction and selection in tool condition monitoring system," in Proc. 15th Australian Joint Conf. Art. Intell.: Adv. Art. Intell., 2002, pp. 487-497. (Pubitemid 36003003)
    • (2002) Lecture Notes in Computer Science , Issue.2557 , pp. 487-497
    • Jie, S.1    Hong, G.S.2    Rahman, M.3    Wong, Y.S.4
  • 4
    • 70449517374 scopus 로고    scopus 로고
    • Intelligent diagnosis and prognosis of tool wear using dominant feature identification
    • Nov
    • J. H. Zhou, C. K. Pang, F. L. Lewis, and Z. W. Zhong, "Intelligent diagnosis and prognosis of tool wear using dominant feature identification, " IEEE Trans. Ind. Informat., vol. 5, no. 4, pp. 454-464, Nov. 2009.
    • (2009) IEEE Trans. Ind. Informat , vol.5 , Issue.4 , pp. 454-464
    • Zhou, J.H.1    Pang, C.K.2    Lewis, F.L.3    Zhong, Z.W.4
  • 5
    • 78651282656 scopus 로고    scopus 로고
    • Tool wear monitoring using acoustic emissions by dominant-feature identification
    • Feb
    • J. H. Zhou, C. K. Pang, Z. W. Zhong, and F. L. Lewis, "Tool wear monitoring using acoustic emissions by dominant-feature identification," IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp. 547-559, Feb. 2011.
    • (2011) IEEE Trans. Instrum. Meas , vol.60 , Issue.2 , pp. 547-559
    • Zhou, J.H.1    Pang, C.K.2    Zhong, Z.W.3    Lewis, F.L.4
  • 6
    • 79956260491 scopus 로고    scopus 로고
    • Multiscale singularity analysis of cutting forces for micromilling tool-wear monitoring
    • Jun
    • Z. Kunpeng, H.-G. Soon, andW.-Y. San, "Multiscale singularity analysis of cutting forces for micromilling tool-wear monitoring," IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2512-2521, Jun. 2011.
    • (2011) IEEE Trans. Ind. Electron , vol.58 , Issue.6 , pp. 2512-2521
    • Kunpeng, Z.1    Soon, H.-G.2    San, W.-Y.3
  • 7
    • 0032642515 scopus 로고    scopus 로고
    • Machinery fault diagnosis and prognosis: Application of advanced signal processing techniques
    • J. H. Suh, S. R. T. Kumara, and S. P. Mysore, "Machinery fault diagnosis and prognosis: Application of advanced signal processing techniques," CIRP Ann.-Manuf. Technol., vol. 48, no. 1, pp. 317-320, 1999.
    • (1999) CIRP Ann.-Manuf. Technol , vol.48 , Issue.1 , pp. 317-320
    • Suh, J.H.1    Kumara, S.R.T.2    Mysore, S.P.3
  • 8
    • 78149466949 scopus 로고    scopus 로고
    • An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics
    • Nov
    • D. P. Filev, R. B. Chinnam, F. Tseng, and P. Baruah, "An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics," IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 767-779, Nov. 2010.
    • (2010) IEEE Trans. Ind. Informat , vol.6 , Issue.4 , pp. 767-779
    • Filev, D.P.1    Chinnam, R.B.2    Tseng, F.3    Baruah, P.4
  • 9
    • 52249098399 scopus 로고    scopus 로고
    • Robust and efficient rule extraction through data summarization and its application in welding fault diagnosis
    • Aug
    • R. Gong, S. H. Huang, and T. Chen, "Robust and efficient rule extraction through data summarization and its application in welding fault diagnosis," IEEE Trans. Ind. Informat., vol. 4, no. 3, p. 198206, Aug. 2008.
    • (2008) IEEE Trans. Ind. Informat , vol.4 , Issue.3 , pp. 198206
    • Gong, R.1    Huang, S.H.2    Chen, T.3
  • 10
    • 26944444715 scopus 로고    scopus 로고
    • Identification and fault diagnosis of a simulated model of an industrial gas turbine
    • DOI 10.1109/TII.2005.844425
    • S. Simani, "Identification and fault diagnosis of a simulated model of an industrial gas turbine," IEEE Trans. Ind. Informat., vol. 1, no. 3, pp. 202-216, Aug. 2005. (Pubitemid 41482388)
    • (2005) IEEE Transactions on Industrial Informatics , vol.1 , Issue.3 , pp. 202-216
    • Simani, S.1
  • 11
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A. K. S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483-1510, 2006.
    • (2006) Mech. Syst. Signal Process , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 12
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: State of the art, challenges and opportunities
    • A. Heng, S. Zhanga, A. C. C. Tana, and J. Mathew, "Rotating machinery prognostics: State of the art, challenges and opportunities," Mech. Syst. Signal Process., vol. 23, no. 3, pp. 724-739, 2009.
    • (2009) Mech. Syst. Signal Process , vol.23 , Issue.3 , pp. 724-739
    • Heng, A.1    Zhanga, S.2    Tana, A.C.C.3    Mathew, J.4
  • 13
    • 45949122424 scopus 로고
    • Simple condition forecasting techniques in vibroacoustical diagnostics
    • Jan
    • C. Cempel, "Simple condition forecasting techniques in vibroacoustical diagnostics," Mech. Syst. Signal Process., vol. 1, no. 1, pp. 75-82, Jan. 1987.
    • (1987) Mech. Syst. Signal Process , vol.1 , Issue.1 , pp. 75-82
    • Cempel, C.1
  • 14
    • 0036625566 scopus 로고    scopus 로고
    • Tool wear monitoring using genetically-generated fuzzy knowledge bases
    • S. Achiche, M. Balazinski, L. Baron, and K. Jemielniak, "Tool wear monitoring using genetically-generated fuzzy knowledge bases," Eng. Appl. Art. Intell., vol. 15, pp. 303-314, 2008.
    • (2008) Eng. Appl. Art. Intell , vol.15 , pp. 303-314
    • Achiche, S.1    Balazinski, M.2    Baron, L.3    Jemielniak, K.4
  • 15
    • 33845676979 scopus 로고    scopus 로고
    • Comparison of fuzzy expert system based strategies of offline and online estimation of flank wear in hard milling process
    • DOI 10.1016/j.eswa.2006.04.003, PII S0957417406001199
    • A. Iqbal, N. He, N. U. Dar, and L. Li, "Comparison of fuzzy expert system based strategies of offline and online estimation of flank wear in hard milling process," Expert Syst. With Appl., vol. 33, pp. 61-66, 2009. (Pubitemid 44959917)
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 61-66
    • Iqbal, A.1    He, N.2    Dar, N.U.3    Li, L.4
  • 17
    • 80054818978 scopus 로고    scopus 로고
    • Novel online speed profile generation for industrial machine tool based on flexible neurofuzzy approximation
    • Feb
    • L. Rutkowski, A. Przybyl, and K. Cpalka, "Novel online speed profile generation for industrial machine tool based on flexible neurofuzzy approximation," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1238-1247, Feb. 2012.
    • (2012) IEEE Trans. Ind. Electron , vol.59 , Issue.2 , pp. 1238-1247
    • Rutkowski, L.1    Przybyl, A.2    Cpalka, K.3
  • 18
    • 0033706205 scopus 로고    scopus 로고
    • Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring
    • Jun
    • X. Li, A. Djordjevich, and P. K. Venuvinod, "Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring," IEEE Trans. Ind. Electron., vol. 47, no. 3, Jun. 2000.
    • (2000) IEEE Trans. Ind. Electron , vol.47 , Issue.3
    • Li, X.1    Djordjevich, A.2    Venuvinod, P.K.3
  • 19
    • 84867941224 scopus 로고    scopus 로고
    • Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring
    • Nov
    • X. Li,H.-X. Li,X.-P. Guan, and R. Du, "Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 4, Nov. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev , vol.34 , Issue.4
    • Li, X.1    Li, H.-X.2    Guan, X.-P.3    Du, R.4
  • 20
    • 79952147752 scopus 로고    scopus 로고
    • Real-time cutting tool condition monitoring in milling
    • F. Cus and U. Zuperl, "Real-time cutting tool condition monitoring in milling," J. Mech. Eng., vol. 57, pp. 142-150, 2011.
    • (2011) J. Mech. Eng , vol.57 , pp. 142-150
    • Cus, F.1    Zuperl, U.2
  • 21
    • 43249130728 scopus 로고    scopus 로고
    • Prediction of tool wear using regression and ANN models in end-milling operation
    • Apr
    • P. Palanisamy, I. Rajendran, and S. Shanmugasundaram, "Prediction of tool wear using regression and ANN models in end-milling operation," Int. J. Adv. Manuf. Technol., vol. 37, no. 1/2, p. 2941, Apr. 2008.
    • (2008) Int. J. Adv. Manuf. Technol , vol.37 , Issue.1-2 , pp. 2941
    • Palanisamy, P.1    Rajendran, I.2    Shanmugasundaram, S.3
  • 22
    • 0034174102 scopus 로고    scopus 로고
    • On-line metal cutting tool condition monitoring. II: Tool-state classification using multi-layer perceptron neural networks
    • DOI 10.1016/S0890-6955(99)00085-1
    • Sr. D. E. Dimla and P. M. Lister, "On-line metal cutting tool condition monitoring. II: Tool-state classification using multilayer perceptron neural networks," Int. J. Mach. Tools Manuf., vol. 40, no. 5, pp. 769-781, 2000. (Pubitemid 30560173)
    • (2000) International Journal of Machine Tools and Manufacture , vol.40 , Issue.5 , pp. 769-781
    • Dimla Sr., D.E.1    Lister, P.M.2
  • 23
    • 51349154288 scopus 로고    scopus 로고
    • Minimizing error in tool wear estimation using artificial neural network
    • Dec. 15-17
    • K. Raimond, "Minimizing error in tool wear estimation using artificial neural network," in Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Dec. 15-17, 2006, pp. 2049-2054.
    • (2006) Proc. IEEE Int. Conf. Ind. Technol. (ICIT) , pp. 2049-2054
    • Raimond, K.1
  • 24
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • P. Tse and D. Atherton, "Prediction of machine deterioration using vibration based fault trends and recurrent neural networks," Trans. ASME: J. Vibration Acoust., no. 121, pp. 355-362, 1999.
    • (1999) Trans. ASME: J. Vibration Acoust , Issue.121 , pp. 355-362
    • Tse, P.1    Atherton, D.2
  • 26
    • 2442503629 scopus 로고    scopus 로고
    • Prognosis of machine health condition using neuro-fuzzy systems
    • W. Q. Wang, M. F. Golnaraghi, and F. Ismail, "Prognosis of machine health condition using neuro-fuzzy systems," Mech. Syst. Signal Process., vol. 18, pp. 813-831, 2004.
    • (2004) Mech. Syst. Signal Process , vol.18 , pp. 813-831
    • Wang, W.Q.1    Golnaraghi, M.F.2    Ismail, F.3
  • 27
    • 33750899486 scopus 로고    scopus 로고
    • Dynamic neural network approach for tool cutting force modelling of end milling operations
    • DOI 10.1080/03081070600782022, PII NMK5472375869404
    • F. Cus, U. Zuperl, and M. Milfelner, "Dynamic neural network approach for tool cutting force modelling of end milling operations," International J. Gen. Syst., vol. 35, no. 5, pp. 603-618, 2006. (Pubitemid 44728628)
    • (2006) International Journal of General Systems , vol.35 , Issue.5 , pp. 603-618
    • Cus, F.1    Zuperl, U.2    Milfelner, M.3
  • 28
    • 0033721855 scopus 로고    scopus 로고
    • Prognosis of remaining bearing life using neural networks, proceedings of the institution ofmechanical engineers
    • Y. Shao and K. Nezu, "Prognosis of remaining bearing life using neural networks, proceedings of the institution ofmechanical engineers," Part I-J. Syst. Control Eng., pp. 217-230, 2000.
    • (2000) Part I-J. Syst. Control Eng , pp. 217-230
    • Shao, Y.1    Nezu, K.2
  • 29
    • 51849160407 scopus 로고    scopus 로고
    • A comparative study of feature selection for hidden Markov model-based micro-milling tool wear monitoring
    • K. P. Zhua, G. S. Hong, and Y. S. Wong, "A comparative study of feature selection for hidden Markov model-based micro-milling tool wear monitoring," Mach. Sci. Technol., vol. 12, no. 3, pp. 348-369, 2008.
    • (2008) Mach. Sci. Technol , vol.12 , Issue.3 , pp. 348-369
    • Zhua, K.P.1    Hong, G.S.2    Wong, Y.S.3
  • 30
    • 79954558061 scopus 로고    scopus 로고
    • Prognosis of gear failures in dc starter motors using hidden Markov models
    • May
    • S. S. H. Zaidi, S. Aviyente, M. Salman,K.-K. Shin, and E. G. Strangas, "Prognosis of gear failures in dc starter motors using hidden Markov models," IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1695-1706, May 2011.
    • (2011) IEEE Trans. Ind. Electron , vol.58 , Issue.5 , pp. 1695-1706
    • Zaidi, S.S.H.1    Aviyente, S.2    Salmank.-K. Shin, M.3    Strangas, E.G.4
  • 31
    • 34147125993 scopus 로고    scopus 로고
    • A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
    • DOI 10.1016/j.ymssp.2006.10.001, PII S0888327006002214
    • M. Dong and D. He, "A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology," Mech. Syst. Signal Process., vol. 21, pp. 2248-2266, 2007. (Pubitemid 46566399)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2248-2266
    • Dong, M.1    He, D.2
  • 33
    • 27744505094 scopus 로고    scopus 로고
    • HMMs for diagnostics and prognostics in machining processes
    • P. Baruah and R. B. Chinnam, "HMMs for diagnostics and prognostics in machining processes," Int. J. Prod. Res., vol. 43, p. 12751293, 2005.
    • (2005) Int. J. Prod. Res , vol.43 , pp. 12751293
    • Baruah, P.1    Chinnam, R.B.2
  • 34
    • 0036700525 scopus 로고    scopus 로고
    • Hidden Markov model-based tool wearmonitoring in machining
    • L. Wang, M. G. Mehrabi, and E. Kannatey-Asibu, "Hidden Markov model-based tool wearmonitoring in machining," ASME J. Manuf. Sci. Eng., vol. 124, p. 651658, 2002.
    • (2002) ASME J. Manuf. Sci. Eng , vol.124 , pp. 651658
    • Wang, L.1    Mehrabi, M.G.2    Kannatey-Asibu, E.3
  • 35
    • 0035400988 scopus 로고    scopus 로고
    • Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
    • H. M. Ertunc, K. A. Loparo, and H. Ocak, "Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)," Int. J. Mach. Tools Manuf., vol. 41, p. 13631384, 2001.
    • (2001) Int. J. Mach. Tools Manuf , vol.41 , pp. 13631384
    • Ertunc, H.M.1    Loparo, K.A.2    Ocak, H.3
  • 36
    • 4043177120 scopus 로고    scopus 로고
    • ser. Chapman & Hall/CRC Computer Science & Data Analysis, 2nd ed. Boca Raton, FL: CRC Press
    • K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence, ser. Chapman & Hall/CRC Computer Science & Data Analysis, 2nd ed. Boca Raton, FL: CRC Press, 2011.
    • (2011) Bayesian Artificial Intelligence
    • Korb, K.B.1    Nicholson, E.A.2
  • 37
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic bayesian networks
    • Adaptive Processing of Sequences and Data Structures
    • Z. Ghahramani, "Learning dynamic Bayesian networks," Lecture Notes in Computer Science, no. 1387, pp. 168-197, 1998. (Pubitemid 128056031)
    • (1998) Lecture Notes in Computer Science , Issue.1387 , pp. 168-197
    • Ghahramani, Z.1
  • 38
    • 38849114067 scopus 로고    scopus 로고
    • Maximum-likelihood and Bayesian parameter estimation
    • New York: Wiley-Intersci ch. 3
    • R. O. Duda, P. E. Hart, and D. G. Stork, " Maximum-likelihood and Bayesian parameter estimation," in Pattern Classification. New York: Wiley-Intersci., 2001, ch. 3, pp. 84-159.
    • (2001) Pattern Classification , pp. 84-159
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 39
    • 0024610919 scopus 로고
    • A tutorial on hiddenMarkovmodels and selected applications in speech recognition
    • Feb
    • L. R. Rabiner, "A tutorial on hiddenMarkovmodels and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 43
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, pp. 415-447, 1992.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 44
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to Bayesian learning
    • Jun. 9-12
    • F. Dan Foresee and M. T. Hagan, "Gauss-Newton approximation to Bayesian learning," in Proc. Int. Conf. Neural Netw., Jun. 9-12, 1997, vol. 3, pp. 1930-1935.
    • (1997) Proc. Int. Conf. Neural Netw , vol.3 , pp. 1930-1935
    • Dan Foresee, F.1    Hagan, M.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.