메뉴 건너뛰기




Volumn 12, Issue 3, 2008, Pages 348-369

A comparative study of feature selection for hidden Markov model-based micro-milling tool wear monitoring

Author keywords

Feature selection; Micro milling; Tool wear monitoring

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONDITION MONITORING; COPPER; DISCRIMINANT ANALYSIS; EVOLUTIONARY ALGORITHMS; FINANCIAL DATA PROCESSING; HIDDEN MARKOV MODELS; ISOMERS; LEARNING SYSTEMS; MARKOV PROCESSES; MILLING (MACHINING); MILLING MACHINES; OBJECT RECOGNITION; SENSOR NETWORKS; SEPARATION;

EID: 51849160407     PISSN: 10910344     EISSN: 15322483     Source Type: Journal    
DOI: 10.1080/10910340802293769     Document Type: Article
Times cited : (39)

References (42)
  • 2
    • 27744505094 scopus 로고    scopus 로고
    • HMMs for diagnostics and prognostics in machining processes
    • Baruah, P.; Chinnam, R.B. (2005) HMMs for diagnostics and prognostics in machining processes. International Journal of Production Research, 43 (15): 1275-1293.
    • (2005) International Journal of Production Research , vol.43 , Issue.15 , pp. 1275-1293
    • Baruah, P.1    Chinnam, R.B.2
  • 7
    • 51849107979 scopus 로고    scopus 로고
    • Feature selection for tool wear diagnosis using soft computing techniques
    • 2001CRD011
    • Goebel K.; Yan, W. (2001) Feature selection for tool wear diagnosis using soft computing techniques. GE Technical Information Series, 2001CRD011.
    • (2001) GE Technical Information Series
    • Goebel, K.1    Yan, W.2
  • 8
  • 12
    • 0030234975 scopus 로고    scopus 로고
    • Fuzzy clustering for automated tool condition monitoring in machinining
    • Li, S.; Elbestawi, M.A. (1996) Fuzzy clustering for automated tool condition monitoring in machinining. Mechanical Systems and Signal Processing, 10 (5): 533-550.
    • (1996) Mechanical Systems and Signal Processing , vol.10 , Issue.5 , pp. 533-550
    • Li, S.1    Elbestawi, M.A.2
  • 13
    • 33751525378 scopus 로고    scopus 로고
    • Grinding wheel condition monitoring with hidden Markov model-based clustering methods
    • Liao, T.W.; Hua, G.; Qu, J.; Blau, P.J. (2006) Grinding wheel condition monitoring with hidden Markov model-based clustering methods, Machining Science and Technology 10: 511-538.
    • (2006) Machining Science and Technology , vol.10 , pp. 511-538
    • Liao, T.W.1    Hua, G.2    Qu, J.3    Blau, P.J.4
  • 14
    • 14744293866 scopus 로고    scopus 로고
    • The mechanics of machining at the micro-scale: Assessment of the current state of the science
    • Liu, X.; Devor, R.E.; Kapoor, S.G.; Ehmann, K.F. (2004) The mechanics of machining at the micro-scale: assessment of the current state of the science. Journal of Manufacturing Science and Engineering, 126 (4): 666-677.
    • (2004) Journal of Manufacturing Science and Engineering , vol.126 , Issue.4 , pp. 666-677
    • Liu, X.1    Devor, R.E.2    Kapoor, S.G.3    Ehmann, K.F.4
  • 15
    • 0032676070 scopus 로고    scopus 로고
    • On the selection of informative wavelets for machinery diagnosis
    • Liu, B.; Ling, S.F. (1999) On the selection of informative wavelets for machinery diagnosis. Mechanical Systems and Signal Processing, 13 (1): 145-162.
    • (1999) Mechanical Systems and Signal Processing , vol.13 , Issue.1 , pp. 145-162
    • Liu, B.1    Ling, S.F.2
  • 16
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay, D.J. (1992) A practical Bayesian framework for back-propagation networks. Neural Computation, 4 (3): 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.1
  • 17
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Malhi, A.; Gao, R.X. (2004) PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53 (6): 1517-1525.
    • (2004) IEEE Transactions on Instrumentation and Measurement , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 19
    • 17444406668 scopus 로고    scopus 로고
    • Identifying critical variables of principal components for unsupervised feature selection
    • Mao, K.Z. (2005) Identifying critical variables of principal components for unsupervised feature selection. IEEE Transactions on Systems, Man, And Cybernetics-Part B: Cybernetics, 35 (2): 339-344.
    • (2005) IEEE Transactions on Systems, Man, And Cybernetics-Part B: Cybernetics , vol.35 , Issue.2 , pp. 339-344
    • Mao, K.Z.1
  • 21
    • 0032205942 scopus 로고    scopus 로고
    • Multi-category classification of tool conditions using wavelet packets and ARTZ network, ASME
    • Niu, Y.M.; Wong, Y.S.; Hong, G.S. (1998) Multi-category classification of tool conditions using wavelet packets and ARTZ network, ASME. Journal of Manufacturing Science and Technology, 120 (4): 807-815.
    • (1998) Journal of Manufacturing Science and Technology , vol.120 , Issue.4 , pp. 807-815
    • Niu, Y.M.1    Wong, Y.S.2    Hong, G.S.3
  • 22
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification: How useful is the evidence framework?
    • Penny, W.D.; Roberts, S.J. (1999) Bayesian neural networks for classification: how useful is the evidence framework? Neural Networks, 12: 877-892.
    • (1999) Neural Networks , vol.12 , pp. 877-892
    • Penny, W.D.1    Roberts, S.J.2
  • 23
  • 24
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of IEEE, 77 (2): 257-286.
    • (1989) Proceedings of IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 27
    • 0036887597 scopus 로고    scopus 로고
    • Discriminant feature extraction using empirical probability density estimation and a local basis library
    • Saito, N.; Coifman, R.R.; Geshwind, F.B.; Warner, F. (2002) Discriminant feature extraction using empirical probability density estimation and a local basis library. Pattern Recognition, 35: 2841-2852.
    • (2002) Pattern Recognition , vol.35 , pp. 2841-2852
    • Saito, N.1    Coifman, R.R.2    Geshwind, F.B.3    Warner, F.4
  • 28
    • 0013009426 scopus 로고    scopus 로고
    • 2nd ed, Oxford University Press, Oxford, UK
    • Shaw, M.C. (2005) Metal Cutting Principles, 2nd ed., Oxford University Press, Oxford, UK.
    • (2005) Metal Cutting Principles
    • Shaw, M.C.1
  • 29
    • 1342329898 scopus 로고    scopus 로고
    • Identification of feature set for effective tool condition monitoring by acoustic emission sensing
    • Sun, J.; Hong, G.S.; Rahman, M.; Wong, Y.S. (2004) Identification of feature set for effective tool condition monitoring by acoustic emission sensing. International Journal Production Research, 42 (5): 901-918.
    • (2004) International Journal Production Research , vol.42 , Issue.5 , pp. 901-918
    • Sun, J.1    Hong, G.S.2    Rahman, M.3    Wong, Y.S.4
  • 35
    • 0035406897 scopus 로고    scopus 로고
    • A comparative study of feature-salience ranking techniques
    • Wang, W.; Jones, P.; Partridge, D. (2001) A comparative study of feature-salience ranking techniques. Neural Computation, 13: 1603-1623.
    • (2001) Neural Computation , vol.13 , pp. 1603-1623
    • Wang, W.1    Jones, P.2    Partridge, D.3
  • 38
    • 0029755708 scopus 로고    scopus 로고
    • Feature extraction and assessment using wavelet packets for monitoring of machining process
    • Wu, Y.; Du, R. (1996) Feature extraction and assessment using wavelet packets for monitoring of machining process. Mechanical Systems and Signal Processing, 10 (1): 29-53.
    • (1996) Mechanical Systems and Signal Processing , vol.10 , Issue.1 , pp. 29-53
    • Wu, Y.1    Du, R.2
  • 39
    • 0033684356 scopus 로고    scopus 로고
    • Wavelet packet feature extraction for vibration monitoring
    • Yen, G.G.; Lin, K.C. (2000) Wavelet packet feature extraction for vibration monitoring. IEEE Transitions on Industrial Electronics, 47 (3): 650-667.
    • (2000) IEEE Transitions on Industrial Electronics , vol.47 , Issue.3 , pp. 650-667
    • Yen, G.G.1    Lin, K.C.2
  • 41
    • 56249121170 scopus 로고    scopus 로고
    • Multi-category micro-milling tool wear classification with continuous hidden Markov models
    • In Press, doi:10.1016/j.ymssp.2008. 04.010
    • Zhu, K.P.; Wong, Y.S.; Hong, G.S. (2008b) Multi-category micro-milling tool wear classification with continuous hidden Markov models. Mechanical System and Signal Processing, pp. 1-14, In Press, doi:10.1016/j.ymssp.2008. 04.010.
    • (2008) Mechanical System and Signal Processing , pp. 1-14
    • Zhu, K.P.1    Wong, Y.S.2    Hong, G.S.3
  • 42
    • 39449119738 scopus 로고    scopus 로고
    • Noise-robust tool condition monitoring in micro-milling with hidden Markov models
    • Springer
    • Zhu, K.P; Wong, Y.S.; Hong, G.S. (2008c) Noise-robust tool condition monitoring in micro-milling with hidden Markov models. Soft Computing Applications in Industry, pp. 23-46, Springer.
    • (2008) Soft Computing Applications in Industry , pp. 23-46
    • Zhu, K.P.1    Wong, Y.S.2    Hong, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.