메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 496-508

Self-organizing time map: An abstraction of temporal multivariate patterns

Author keywords

Dynamic visual clustering; Exploratory data analysis; Exploratory temporal structure analysis; Self organizing map; Self organizing time map

Indexed keywords

EXPLORATORY DATA ANALYSIS; KOHONEN; MULTIVARIATE PATTERNS; ONE-DIMENSIONAL ARRAYS; SELF ORGANIZING; SHORT TERM MEMORY; STRUCTURAL CHANGE; TEMPORAL STRUCTURES; TIME TOPOLOGY; TIME UNITS; TOPOLOGY PRESERVATION; TOY DATA; VERTICAL DIRECTION; VISUAL CLUSTERING;

EID: 84867877383     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.011     Document Type: Article
Times cited : (39)

References (51)
  • 1
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 66:59-69.
    • (1982) Biol. Cybern. , vol.66 , pp. 59-69
    • Kohonen, T.1
  • 5
    • 67650345078 scopus 로고    scopus 로고
    • Time series prediction with the self-organizing map: a review
    • Springer-Verlag, Berlin, P. Hitzler, B. Hammer (Eds.)
    • Barreto G. Time series prediction with the self-organizing map: a review. Perspectives on Neural-Symbolic Integration 2007, Springer-Verlag, Berlin. P. Hitzler, B. Hammer (Eds.).
    • (2007) Perspectives on Neural-Symbolic Integration
    • Barreto, G.1
  • 6
    • 0000912093 scopus 로고    scopus 로고
    • Managing complexity in large data bases using self-organizing maps
    • Back B., Sere K., Vanharanta H. Managing complexity in large data bases using self-organizing maps. Acc. Manage. Inf. Technol. 1998, 8(4):191-210.
    • (1998) Acc. Manage. Inf. Technol. , vol.8 , Issue.4 , pp. 191-210
    • Back, B.1    Sere, K.2    Vanharanta, H.3
  • 7
    • 78049429522 scopus 로고    scopus 로고
    • Visualizing temporal cluster changes using relative density self-organizing maps
    • Denny, Graham W., Christen P. Visualizing temporal cluster changes using relative density self-organizing maps. Knowl. Inf. Syst. 2010, 25(2):281-302.
    • (2010) Knowl. Inf. Syst. , vol.25 , Issue.2 , pp. 281-302
    • Denny1    Graham, W.2    Christen, P.3
  • 9
    • 0042834362 scopus 로고    scopus 로고
    • Comparing numerical data and text information from annual reports using self-organizing maps
    • Back B., Toivonen J., Vanharanta H., Visa A. Comparing numerical data and text information from annual reports using self-organizing maps. Int. J. Acc. Inf. Syst. 2001, 2:249-269.
    • (2001) Int. J. Acc. Inf. Syst. , vol.2 , pp. 249-269
    • Back, B.1    Toivonen, J.2    Vanharanta, H.3    Visa, A.4
  • 10
    • 84867890452 scopus 로고    scopus 로고
    • Mapping the State of Financial Stability. ECB Working Papers No.
    • P. Sarlin, T. Peltonen, Mapping the State of Financial Stability. ECB Working Papers No. 1382, 2011.
    • (2011) , vol.1382
    • Sarlin, P.1    Peltonen, T.2
  • 11
    • 85164939817 scopus 로고    scopus 로고
    • Visual predictions of currency crises using self-organizing maps, intelligent systems in accounting
    • Sarlin P., Marghescu D. Visual predictions of currency crises using self-organizing maps, intelligent systems in accounting. Finance Manage. 2011, 18(1):15-38.
    • (2011) Finance Manage. , vol.18 , Issue.1 , pp. 15-38
    • Sarlin, P.1    Marghescu, D.2
  • 12
    • 0023983407 scopus 로고
    • The neural phonetic typewriter
    • Kohonen T. The neural phonetic typewriter. Computer 1988, 21(3):11-22.
    • (1988) Computer , vol.21 , Issue.3 , pp. 11-22
    • Kohonen, T.1
  • 13
    • 0004647720 scopus 로고
    • The hypermap architecture
    • Elsevier, Amsterdam, Netherlands
    • Kohonen T. The hypermap architecture. Artificial Neural Networks 1991, Vol. II:1357-1360. Elsevier, Amsterdam, Netherlands.
    • (1991) Artificial Neural Networks , vol.2 , pp. 1357-1360
    • Kohonen, T.1
  • 15
    • 33749527341 scopus 로고    scopus 로고
    • A visualization system for space-time and multivariate patterns (VIS-STAMP)
    • Guo D., Chen J., MacEachren A., Liao K. A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans. Visual Comput. Graphics 2006, 12(6):1461-1474.
    • (2006) IEEE Trans. Visual Comput. Graphics , vol.12 , Issue.6 , pp. 1461-1474
    • Guo, D.1    Chen, J.2    MacEachren, A.3    Liao, K.4
  • 18
    • 0000163157 scopus 로고    scopus 로고
    • Time in self-organizing maps: an overview of models
    • Barreto G., Araújo A. Time in self-organizing maps: an overview of models. Int. J. Comput. Res. 2001, 10(2):139-179.
    • (2001) Int. J. Comput. Res. , vol.10 , Issue.2 , pp. 139-179
    • Barreto, G.1    Araújo, A.2
  • 19
    • 0037928080 scopus 로고    scopus 로고
    • A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case
    • Barreto G., Araujo F., Kremer S.C. A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Comput. 2003, 15(6):1255-1320.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1255-1320
    • Barreto, G.1    Araujo, F.2    Kremer, S.C.3
  • 20
    • 79959323170 scopus 로고    scopus 로고
    • A taxonomy of self-organizing maps for temporal sequence processing
    • Guimarães G., Lobo V., Moura-Pires F. A taxonomy of self-organizing maps for temporal sequence processing. Intell. Data Anal. 2003, 7(4):269-290.
    • (2003) Intell. Data Anal. , vol.7 , Issue.4 , pp. 269-290
    • Guimarães, G.1    Lobo, V.2    Moura-Pires, F.3
  • 23
    • 0003389364 scopus 로고
    • Self-organizing neural networks for the analysis and representation of data: some financial cases
    • Martín-del-Brío B., Serrano-Cinca C. Self-organizing neural networks for the analysis and representation of data: some financial cases. Neural Comput. Appl. 1993, 1(2):193-206.
    • (1993) Neural Comput. Appl. , vol.1 , Issue.2 , pp. 193-206
    • Martín-del-Brío, B.1    Serrano-Cinca, C.2
  • 26
  • 27
    • 84867884229 scopus 로고    scopus 로고
    • A Framework for State Transitions on the Self-Organizing Map: Some Temporal Financial Applications, Intelligent Systems in Accounting, Finance and Management, forthcoming
    • P. Sarlin, Z. Yao, T. Eklund, A Framework for State Transitions on the Self-Organizing Map: Some Temporal Financial Applications, Intelligent Systems in Accounting, Finance and Management, forthcoming, 2012.
    • (2012)
    • Sarlin, P.1    Yao, Z.2    Eklund, T.3
  • 33
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • Strickert M., Hammer B. Merge SOM for temporal data. Neurocomputing 2005, 64:39-72.
    • (2005) Neurocomputing , vol.64 , pp. 39-72
    • Strickert, M.1    Hammer, B.2
  • 34
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • Voegtlin T. Recursive self-organizing maps. Neural Networks 2002, 15(8-9):979-992.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 979-992
    • Voegtlin, T.1
  • 35
    • 0013423431 scopus 로고    scopus 로고
    • Feedback self-organizing map and its application to spatio-temporal pattern classification
    • Horio K., Yamakawa T. Feedback self-organizing map and its application to spatio-temporal pattern classification. Int. J. Comput. Intell. Appl. 2001, 1(1):1-18.
    • (2001) Int. J. Comput. Intell. Appl. , vol.1 , Issue.1 , pp. 1-18
    • Horio, K.1    Yamakawa, T.2
  • 36
  • 37
    • 12144281716 scopus 로고    scopus 로고
    • Unsupervised recursive sequences processing
    • Strickert M., Hammer B., Blohm S. Unsupervised recursive sequences processing. Neurocomputing 2005, 63:69-98.
    • (2005) Neurocomputing , vol.63 , pp. 69-98
    • Strickert, M.1    Hammer, B.2    Blohm, S.3
  • 38
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • Hammer B., Micheli A., Sperduti A., Strickert M. A general framework for unsupervised processing of structured data. Neurocomputing 2004, 57:3-35.
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Sperduti, A.3    Strickert, M.4
  • 41
    • 26944500666 scopus 로고    scopus 로고
    • Temporal knowledge discovery with self-organizing neural networks
    • Guimarães G. Temporal knowledge discovery with self-organizing neural networks. Int. J. Comput. Syst.Signals 2000, 1(1):5-16.
    • (2000) Int. J. Comput. Syst.Signals , vol.1 , Issue.1 , pp. 5-16
    • Guimarães, G.1
  • 42
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • Cottrell M., Fort J.C., Pagès G. Theoretical aspects of the SOM algorithm. Neurocomputing 1998, 21(1-3):119-138.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pagès, G.3
  • 43
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Fritzke B. A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 1994, 7:625-632.
    • (1994) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 44
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intell. Data Anal. 1999, 3(2):111-126.
    • (1999) Intell. Data Anal. , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 45
    • 0041813144 scopus 로고    scopus 로고
    • ColorBrewer.org: an online tool for selecting color schemes for maps
    • Harrower M.A., Brewer C.A. ColorBrewer.org: an online tool for selecting color schemes for maps. The Cartographic J. 2003, 40(1):27-37.
    • (2003) The Cartographic J. , vol.40 , Issue.1 , pp. 27-37
    • Harrower, M.A.1    Brewer, C.A.2
  • 46
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon J.W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 1969, 18:401-409.
    • (1969) IEEE Trans. Comput. , vol.18 , pp. 401-409
    • Sammon, J.W.1
  • 47
    • 84867890295 scopus 로고
    • Colorimetry, Second Ed. CIE Publication No. 15.2
    • Colorimetry, Second Ed. CIE Publication No. 15.2, 1986.
    • (1986)
  • 49
    • 33847360579 scopus 로고    scopus 로고
    • Visualizing distortions and recovering topology in continuous projection techniques
    • Aupetit M. Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 2007, 70(7-9):1304-1330.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1304-1330
    • Aupetit, M.1
  • 51
    • 84865793595 scopus 로고    scopus 로고
    • Visual Tracking of the Millennium Development Goals with a Fuzzified Self-Organizing Neural Network
    • forthcoming, doi:10.1007/s13042-011-0057-5
    • P. Sarlin, Visual Tracking of the Millennium Development Goals with a Fuzzified Self-Organizing Neural Network, International Journal of Machine Learning and Cybernetics,, forthcoming. doi:10.1007/s13042-011-0057-5.
    • International Journal of Machine Learning and Cybernetics
    • Sarlin, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.