메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 197-205

Geometric algorithms for parametric-margin ν-support vector machine

Author keywords

Geometric algorithm; Nearest point problem; Parametric margin; Reduced convex hull; Support vector machine

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION ACCURACY; COMPUTATIONAL RESULTS; CONVEX HULL; GEOMETRIC ALGORITHM; GEOMETRIC INTERPRETATION; HETEROSCEDASTIC; NEAREST POINT; PARAMETRIC-MARGIN; WEIGHT FACTOR;

EID: 84867864947     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.06.026     Document Type: Article
Times cited : (3)

References (39)
  • 7
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany
    • T. Joachims, C. Ndellec, C. Rouveriol, Text categorization with support vector machines: learning with many relevant features, in: European Conference on Machine Learning No. 10, Chemnitz, Germany, 1998, pp. 137-142.
    • (1998) , pp. 137-142
    • Joachims, T.1    Ndellec, C.2    Rouveriol, C.3
  • 9
    • 59149098920 scopus 로고    scopus 로고
    • Associated evolution of a support vector machine-based classifier for pedestrian detection
    • Cao X.B., Xu Y.W., Chen D., Qiao H. Associated evolution of a support vector machine-based classifier for pedestrian detection. Inf. Sci. 2009, 179(8):1070-1077.
    • (2009) Inf. Sci. , vol.179 , Issue.8 , pp. 1070-1077
    • Cao, X.B.1    Xu, Y.W.2    Chen, D.3    Qiao, H.4
  • 10
    • 84867865224 scopus 로고    scopus 로고
    • Institute of automation
    • Global geometric of SVM classifiers, Technique Report, AI Lab,
    • D. Zhou, B.H. Xiao, H.B. Zhou, R.W. Dai, Global geometric of SVM classifiers, Technique Report, AI Lab, Institute of automation, Chinese Academy of Sciences, 2002.
    • (2002) Chinese Academy of Sciences
    • Zhou, D.1    Xiao, B.H.2    Zhou, H.B.3    Dai, R.W.4
  • 11
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, 185-208. MIT Press, Cambridge, MA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 12
    • 0006456134 scopus 로고    scopus 로고
    • Geometry in learning
    • Mathematical Association of America, Washington, DC, C. Gorini, E. Hart, W. Meyer, T. Phillips (Eds.)
    • Bennett K.P., Bredensteiner E.J. Geometry in learning. Geometry at Work 1998, Mathematical Association of America, Washington, DC. C. Gorini, E. Hart, W. Meyer, T. Phillips (Eds.).
    • (1998) Geometry at Work
    • Bennett, K.P.1    Bredensteiner, E.J.2
  • 15
    • 0002274728 scopus 로고
    • An iterative procedure for computing the minimum of a quadratic form on a convex set
    • Gilbert E.G. An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Control 1966, 4(1):61-79.
    • (1966) SIAM J. Control , vol.4 , Issue.1 , pp. 61-79
    • Gilbert, E.G.1
  • 16
    • 0038411822 scopus 로고
    • Sravnitelnyj analiz algoritmov sinteza linejnogo reshajushchego pravila dlja proverki slozhnych gipotez (comparative analysis of algorithms synthesising linear decision rule for analysis of complex hypotheses)
    • (in Russian)
    • Schlesinger M.I., Kalmykov V.G., Suchorukov A.A. Sravnitelnyj analiz algoritmov sinteza linejnogo reshajushchego pravila dlja proverki slozhnych gipotez (comparative analysis of algorithms synthesising linear decision rule for analysis of complex hypotheses). Automatika 1981, 1:3-9. (in Russian).
    • (1981) Automatika , vol.1 , pp. 3-9
    • Schlesinger, M.I.1    Kalmykov, V.G.2    Suchorukov, A.A.3
  • 18
    • 0016025580 scopus 로고
    • Finding the point of a polyhedron closest to the origin
    • Mitchell B., Dem'yanov V., Malozemov V. Finding the point of a polyhedron closest to the origin. SIAM J. Control 1974, 12:19-26.
    • (1974) SIAM J. Control , vol.12 , pp. 19-26
    • Mitchell, B.1    Dem'yanov, V.2    Malozemov, V.3
  • 19
  • 20
    • 0038647819 scopus 로고    scopus 로고
    • An iterative algorithm learning the maximal margin classifier
    • Franc V., Hlaváč V. An iterative algorithm learning the maximal margin classifier. Pattern Recognition 2003, 36(9):1985-1996.
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 1985-1996
    • Franc, V.1    Hlaváč, V.2
  • 22
    • 78049363062 scopus 로고    scopus 로고
    • A common framework for the convergence of the GSK, MDM and SMO algorithms
    • Springer, doi:10.1007/978-3-642-15822-3_10.
    • J. López, J.R. Dorronsoro, A common framework for the convergence of the GSK, MDM and SMO algorithms, in: Lecture Notes in Computer Science, vol. 6353, Springer, 2010, pp. 82-87. doi:10.1007/978-3-642-15822-3_10.
    • (2010) In: Lecture Notes in Computer Science , vol.6353 , pp. 82-87
    • López, J.1    Dorronsoro, J.R.2
  • 24
    • 33646516358 scopus 로고    scopus 로고
    • A geometric approach to support vector machine classification
    • Mavroforakis M.E., Theodoridis S. A geometric approach to support vector machine classification. IEEE Trans. Neural Networks 2006, 17(3):671-682.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.3 , pp. 671-682
    • Mavroforakis, M.E.1    Theodoridis, S.2
  • 25
    • 2942586739 scopus 로고    scopus 로고
    • A generalized S-K algorithm for learning ν-SVM classifiers
    • Tao Q., Wu G., Wang J. A generalized S-K algorithm for learning ν-SVM classifiers. Pattern Recognition Lett. 2004, 25(10):1165-1171.
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.10 , pp. 1165-1171
    • Tao, Q.1    Wu, G.2    Wang, J.3
  • 27
    • 34548614456 scopus 로고    scopus 로고
    • A geometric nearest point algorithm for the efficient solution of the SVM classification task
    • Mavroforakis M.E., Sdralis M., Theodoridis S. A geometric nearest point algorithm for the efficient solution of the SVM classification task. IEEE Trans. Neural Networks 2007, 18(5):1545-1549.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.5 , pp. 1545-1549
    • Mavroforakis, M.E.1    Sdralis, M.2    Theodoridis, S.3
  • 28
    • 78649326085 scopus 로고    scopus 로고
    • Clipping algorithms for solving the nearest point problem over reduced convex hulls
    • López J., Barbero Á., Dorronsoro J.R. Clipping algorithms for solving the nearest point problem over reduced convex hulls. Pattern Recognition 2011, 44(3):607-614.
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 607-614
    • López, J.1    Barbero, Á.2    Dorronsoro, J.R.3
  • 29
    • 67949120315 scopus 로고    scopus 로고
    • A novel geometric approach to binary classification based on scaled convex hulls
    • Liu Z.B., Liu J.G., Pan C., Wang G.Y. A novel geometric approach to binary classification based on scaled convex hulls. IEEE Trans. Neural Networks 2009, 20(7):1215-1220.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.7 , pp. 1215-1220
    • Liu, Z.B.1    Liu, J.G.2    Pan, C.3    Wang, G.Y.4
  • 30
    • 70350726192 scopus 로고    scopus 로고
    • A generalized Gilbert's algorithm for approximating general SVM classifiers
    • Liu Z.B., Liu J.G., Chen Z., Wang G.Y. A generalized Gilbert's algorithm for approximating general SVM classifiers. Neurocomputing 2009, 73:219-224.
    • (2009) Neurocomputing , vol.73 , pp. 219-224
    • Liu, Z.B.1    Liu, J.G.2    Chen, Z.3    Wang, G.Y.4
  • 31
    • 58349115628 scopus 로고    scopus 로고
    • CCH-based geometric algorithm for SVM classification and the application
    • Peng X.J., Wang Y.F. CCH-based geometric algorithm for SVM classification and the application. Apply Mathematics and Mechanics (English Edition) 2009, 30(1):89-100.
    • (2009) Apply Mathematics and Mechanics (English Edition) , vol.30 , Issue.1 , pp. 89-100
    • Peng, X.J.1    Wang, Y.F.2
  • 32
    • 63549096237 scopus 로고    scopus 로고
    • Total margin ν-support vector machine and its geometric problem
    • (in Chinese)
    • Peng X.J., Wang Y.F. Total margin ν-support vector machine and its geometric problem. Pattern Recognition Artif. Intell. 2009, 22(1):8-16. (in Chinese).
    • (2009) Pattern Recognition Artif. Intell. , vol.22 , Issue.1 , pp. 8-16
    • Peng, X.J.1    Wang, Y.F.2
  • 33
    • 77958154093 scopus 로고    scopus 로고
    • A ν-twin support vector machine (ν-TSVM) classifier and its geometric approaches
    • Peng X.J. A ν-twin support vector machine (ν-TSVM) classifier and its geometric approaches. Inf. Sci. 2010, 180:3863-3875.
    • (2010) Inf. Sci. , vol.180 , pp. 3863-3875
    • Peng, X.J.1
  • 35
    • 0242288816 scopus 로고    scopus 로고
    • A geometric approach to support vector regression
    • Bi J., Bennett K.P. A geometric approach to support vector regression. Neurocomputing 2003, 55:79-108.
    • (2003) Neurocomputing , vol.55 , pp. 79-108
    • Bi, J.1    Bennett, K.P.2
  • 36
    • 78650701421 scopus 로고    scopus 로고
    • The robust and efficient adaptive normal direction support vector regression
    • Peng X.J., Wang Y.F. The robust and efficient adaptive normal direction support vector regression. Expert Syst. Appl. 2011, 38(4):2998-3008.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 2998-3008
    • Peng, X.J.1    Wang, Y.F.2
  • 37
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parameteric insensitive/margin model
    • Hao P.-Y. New support vector algorithms with parameteric insensitive/margin model. Neural Networks 2010, 23(1):60-73.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 60-73
    • Hao, P.-Y.1
  • 39
    • 84867892079 scopus 로고    scopus 로고
    • Benchmark repository, datasets available at:
    • G. Rätsch, Benchmark repository, datasets available at: 2000. http://ida.first.fhg.de/projects/bench/benchmarks.htm.
    • (2000)
    • Rätsch, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.