메뉴 건너뛰기




Volumn 21, Issue 11, 2012, Pages 4508-4521

SNMFCA: Supervised NMF-based image classification and annotation

Author keywords

Image annotation; image classification; latent image bases; nonnegative matrix factorization; supervised learning

Indexed keywords

CLASS LABELS; COMPUTATIONALLY EFFICIENT; DESCRIPTORS; IMAGE ANNOTATION; IMAGE DESCRIPTORS; LATENT IMAGES; LINEAR LEAST SQUARES PROBLEMS; MAPPING MODEL; NON-NEGATIVE MATRIX; NONNEGATIVE LEAST SQUARES; NONNEGATIVE MATRIX FACTORIZATION; REAL-WORLD IMAGE DATA; TEST IMAGES; TRAINING IMAGE; TRAINING PHASE;

EID: 84867863394     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2206040     Document Type: Article
Times cited : (50)

References (58)
  • 1
    • 0029895137 scopus 로고    scopus 로고
    • Speed of processing in the human visual system
    • DOI 10.1038/381520a0
    • S. Thorpe, D. Fize, and C. Marlot, "Speed of processing in the human visual system," Nature, vol. 381, no. 6582, pp. 520-522, 1996. (Pubitemid 26170929)
    • (1996) Nature , vol.381 , Issue.6582 , pp. 520-522
    • Thorpe, S.1    Fize, D.2    Marlot, C.3
  • 2
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • Jun.
    • L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural scene categories," in Proc. Comput. Vis. Pattern Recognit., Jun. 2005, pp. 524-531.
    • (2005) In Proc. Comput. Vis. Pattern Recognit , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 3
    • 70450219021 scopus 로고    scopus 로고
    • Toward total scene understanding: Classification, annotation and segmentation in an automatic framework
    • L. Li, R. Socher, and F. Li, "Toward total scene understanding: Classification, annotation and segmentation in an automatic framework," in Proc. Comput. Vis. Pattern Recognit., 2009, pp. 2036-2043.
    • (2009) In Proc. Comput. Vis. Pattern Recognit. , pp. 2036-2043
    • Li, L.1    Socher, R.2    Li, F.3
  • 6
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • S. Maji, A. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," in Proc. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
    • (2008) In Proc. Comput. Vis. Pattern Recognit. , pp. 1-8
    • Maji, S.1    Berg, A.2    Malik, J.3
  • 9
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Proc. Comput. Vis. Pattern Recognit., 2009, pp. 1794-1801.
    • (2009) In Proc. Comput. Vis. Pattern Recognit. , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 10
    • 78149308464 scopus 로고    scopus 로고
    • Efficietn highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, and T. Huang, "Efficietn highly over-complete sparse coding using a mixture model," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 113-126.
    • (2010) In Proc. Eur. Conf. Comput. Vis. , pp. 113-126
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 12
    • 62249199807 scopus 로고    scopus 로고
    • Supervised and traditional term weighting methods for automatic text categorization
    • Apr
    • M. Lan, C. Tan, J. Su, and Y. Lu, "Supervised and traditional term weighting methods for automatic text categorization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 4, pp. 721-735, Apr. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.4 , pp. 721-735
    • Lan, M.1    Tan, C.2    Su, J.3    Lu, Y.4
  • 14
    • 70350513393 scopus 로고    scopus 로고
    • Ph.D. thesis Dépt. D'Ingénierie Math., Univ. Catholique De Louvain, Ottignies-Louvain-la-Neuve, Belgium
    • N. Ho, "Nonnegative matrix factorization algorithms and applications," Ph.D. thesis, Dépt. D'Ingénierie Math., Univ. Catholique De Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2008.
    • (2008) Nonnegative Matrix Factorization Algorithms and Applications
    • Ho, N.1
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct.
    • D. Lee and H. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 16
  • 17
    • 77956014774 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semisupervised heterogeneous data coclustering
    • Oct
    • Y Chen, L. Wang, and M. Dong, "Non-negative matrix factorization for semisupervised heterogeneous data coclustering," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1459-1474, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1459-1474
    • Chen, Y.1    Wang, L.2    Dong, M.3
  • 18
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • Y Liu, R. Jin, and L. Yang, "Semi-supervised multi-label learning by constrained non-negative matrix factorization," in Proc. 21st Nat Conf. Artif. Intell., 2006, pp. 421-426. (Pubitemid 44705320)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 19
    • 85062751034 scopus 로고    scopus 로고
    • Non-negative matrix factorization with constraints
    • H. Liu and Z. Wu, "Non-negative matrix factorization with constraints," in Proc. AAAI, 2010, pp. 506-511.
    • (2010) In Proc. AAAI , pp. 506-511
    • Liu, H.1    Wu, Z.2
  • 20
    • 74549174193 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization
    • Jan
    • H. Lee, J. Yoo, and S. Choi, "Semi-supervised nonnegative matrix factorization," IEEE Signal Process. Lett., vol. 17, no. 1, pp. 4-7, Jan. 2010.
    • (2010) IEEE Signal Process. Lett. , vol.17 , Issue.1 , pp. 4-7
    • Lee, H.1    Yoo, J.2    Choi, S.3
  • 21
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. Freeman, "LabelMe: A database and web-based tool for image annotation," Int. J. Comput. Vis., vol. 77, nos. 1-3, pp. 157-173, 2008.
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1-3 , pp. 157-173
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 24
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based onjoint statistics of complex wavelet coefficients
    • S. Portilla and E. Simoncelli, "A parametric texture model based onjoint statistics of complex wavelet coefficients," Int. J. Comput. Vis., vol. 40, no. 1, pp. 49-70, 2000.
    • (2000) Int. J. Comput. Vis. , vol.40 , Issue.1 , pp. 49-70
    • Portilla, S.1    Simoncelli, E.2
  • 28
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying event by scene and object recognition
    • L. Li and L. Fei-Fei, "What, where and who? Classifying event by scene and object recognition," in Proc. Int. Conf. Comput. Vis., 2007, pp. 1-8.
    • (2007) In Proc. Int. Conf. Comput. Vis. , pp. 1-8
    • Li, L.1    Fei-Fei, L.2
  • 29
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • DOI 10.1007/s11263-006-9794-4
    • J. Zhang, M. Marszalek, C. Lazebnik, and S. Schmid, "Local features and kernels for classification of texture and object categories: A com-parehensive study," Int. J. Comput. Vis., vol. 73, no. 2, pp. 213-238, Jun. 2007. (Pubitemid 46181625)
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 30
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • I. Ramirez, P. Sprechmann, and G. Sapiro, "Classification and clustering via dictionary learning with structured incoherence and shared features," in Proc. Comput. Vis. Pattern Recognit., 2010, pp. 3501-3508.
    • (2010) In Proc. Comput. Vis. Pattern Recognit. , pp. 3501-3508
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 32
    • 48049095024 scopus 로고    scopus 로고
    • Randomized clustering forests for images classification
    • Sep
    • F. Moosmann, E. Nowak, and F. Jurie, "Randomized clustering forests for images classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1632-1646, Sep. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.9 , pp. 1632-1646
    • Moosmann, F.1    Nowak, E.2    Jurie, F.3
  • 33
  • 35
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences and trends of the new age
    • Apr
    • R. Datta, D. Joshi, J. Li, and J. Wang, "Image retrieval: Ideas, influences and trends of the new age," ACM Comput. Surveys, vol. 40, no. 2, pp. 5-64, Apr. 2008.
    • (2008) ACM Comput. Surveys , vol.40 , Issue.2 , pp. 5-64
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.4
  • 36
    • 85027947980 scopus 로고    scopus 로고
    • A hybrid probabilistic model for unified collaborative and content-based image tagging
    • Jul
    • N. Zhou, W. Cheung, G. Qiu, and X. Xue, "A hybrid probabilistic model for unified collaborative and content-based image tagging," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 7, pp. 1281-1294, Jul. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.7 , pp. 1281-1294
    • Zhou, N.1    Cheung, W.2    Qiu, G.3    Xue, X.4
  • 39
  • 45
    • 77954086656 scopus 로고    scopus 로고
    • Baselines for image annota-tion
    • Oct
    • A. Makadia, V. Pavlovic, and S. Kumar, "Baselines for image annota-tion," Int. J. Comput. Vis., vol. 90, no. 1, pp. 88-105, Oct. 2010.
    • (2010) Int. J. Comput. Vis. , vol.90 , Issue.1 , pp. 88-105
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 46
  • 50
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized non-negative matrix factorization for data representation
    • Aug
    • D. Cai, X. He, J. Han, and T. Huang, "Graph regularized non-negative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.4
  • 51
    • 0033275630 scopus 로고    scopus 로고
    • The multilinear engine: A table-driven, least squares pro-gram for solving multilinear problems, including the n-way parallel factor analysis model
    • P. Paatero, "The multilinear engine: A table-driven, least squares pro-gram for solving multilinear problems, including the n-way parallel factor analysis model," J. Comput. Graph. Stat., vol. 8, no. 4, pp. 854-888, 1999.
    • (1999) J. Comput. Graph. Stat. , vol.8 , Issue.4 , pp. 854-888
    • Paatero, P.1
  • 53
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix fac-torization
    • C. Lin, "Projected gradient methods for nonnegative matrix fac-torization," Neural Comput., vol. 19, no. 10, pp. 2756-2779, 2007.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.1
  • 54
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • DOI 10.1016/S0167-6377(99)00074-7
    • L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear Gauss-Seidel method under convex constraints," Oper. Res. Lett., vol. 26, no. 3, pp. 127-136, 2000. (Pubitemid 30564332)
    • (2000) Operations Research Letters , vol.26 , Issue.3 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 56
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 categories
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 categories," in Proc. Workshop Generat.-Model Based Comput. Vis. Pattern Recognit., 2004, pp. 178-186.
    • (2004) In Proc. Workshop Generat.-Model Based Comput. Vis. Pattern Recognit. , pp. 178-186
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 57
    • 67149122177 scopus 로고    scopus 로고
    • M3MIML: A maximum margin method for multi-instance multi-label learning
    • M. Zhang and Z. Zhou, "M3MIML: A maximum margin method for multi-instance multi-label learning," in Proc. Int. Conf. Data Mining, 2008, pp. 688-697.
    • (2008) In Proc. Int. Conf. Data Mining , pp. 688-697
    • Zhang, M.1    Zhou, Z.2
  • 58
    • 85162004685 scopus 로고    scopus 로고
    • A discriminative latent model of image region and object tag correspondence
    • Y. Wang and G. Mori, "A discriminative latent model of image region and object tag correspondence," in Proc. Neural Inf. Process. Syst., 2010, pp. 2397-2405.
    • (2010) In Proc. Neural Inf. Process. Syst. , pp. 2397-2405
    • Wang, Y.1    Mori, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.