-
1
-
-
50049123242
-
Tools to study DNA repair. What's in the box?
-
Feuerhahn, S., and Egly, J. M. (2008) Tools to study DNA repair. What's in the box? Trends Genet. 24, 467-474
-
(2008)
Trends Genet.
, vol.24
, pp. 467-474
-
-
Feuerhahn, S.1
Egly, J.M.2
-
2
-
-
77950023207
-
Oxidative stress and oxidative damage in carcinogenesis
-
Klaunig, J. E., Kamendulis, L. M., and Hocevar, B. A. (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 38, 96-109
-
(2010)
Toxicol. Pathol.
, vol.38
, pp. 96-109
-
-
Klaunig, J.E.1
Kamendulis, L.M.2
Hocevar, B.A.3
-
3
-
-
3943107573
-
Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
-
DOI 10.1146/annurev.biochem.73.011303.073723
-
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39-85 (Pubitemid 39050363)
-
(2004)
Annual Review of Biochemistry
, vol.73
, pp. 39-85
-
-
Sancar, A.1
Lindsey-Boltz, L.A.2
Unsal-Kacmaz, K.3
Linn, S.4
-
4
-
-
0028857681
-
The base excision repair pathway
-
Seeberg, E., Eide, L., and Bjoras, M. (1995) The base excision repair pathway. Trends Biochem. Sci. 20, 391-397
-
(1995)
Trends Biochem. Sci.
, vol.20
, pp. 391-397
-
-
Seeberg, E.1
Eide, L.2
Bjoras, M.3
-
5
-
-
33751568508
-
The cellular control of DNA double-strand breaks
-
DOI 10.1002/jcb.21067
-
Scott, S. P., and Pandita, T. K. (2006) The cellular control of DNA doublestrand breaks. J. Cell. Biochem. 99, 1463-1475 (Pubitemid 44845708)
-
(2006)
Journal of Cellular Biochemistry
, vol.99
, Issue.6
, pp. 1463-1475
-
-
Scott, S.P.1
Pandita, T.K.2
-
6
-
-
63249124451
-
Chromatin remodeling finds its place in the DNA double-strand break response
-
Pandita, T. K., and Richardson, C. (2009) Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res. 37, 1363-1377
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 1363-1377
-
-
Pandita, T.K.1
Richardson, C.2
-
7
-
-
0031794286
-
Molecular mechanisms of DNA double-strand break repair
-
DOI 10.1016/S0962-8924(98)01383-X, PII S0962892498013816
-
Kanaar, R., Hoeijmakers, J. H., and van Gent, D. C. (1998) Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 8, 483-489 (Pubitemid 28539407)
-
(1998)
Trends in Cell Biology
, vol.8
, Issue.12
, pp. 483-489
-
-
Kanaar, R.1
Hoeijmakers, J.H.J.2
Van Gent, D.C.3
-
8
-
-
0035695023
-
Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans
-
DOI 10.1016/S1097-2765(01)00419-1
-
Cromie, G. A., Connelly, J. C., and Leach, D. R. (2001) Recombination at double-strand breaks and DNA ends. Conserved mechanisms from phage to humans. Mol. Cell 8, 1163-1174 (Pubitemid 34084989)
-
(2001)
Molecular Cell
, vol.8
, Issue.6
, pp. 1163-1174
-
-
Cromie, G.A.1
Connelly, J.C.2
Leach, D.R.F.3
-
9
-
-
0024425887
-
Checkpoints: controls that ensure the order of cell cycle events
-
Hartwell, L. H., and Weinert, T. A. (1989) Checkpoints. Controls that ensure the order of cell cycle events. Science 246, 629-634 (Pubitemid 19283354)
-
(1989)
Science
, vol.246
, Issue.4930
, pp. 629-634
-
-
Hartwell, L.H.1
Weinert, T.A.2
-
10
-
-
0027120276
-
Role of yeast in cancer research
-
Hartwell, L. H. (1992) Role of yeast in cancer research. Cancer, 69, 2615-2621
-
(1992)
Cancer
, vol.69
, pp. 2615-2621
-
-
Hartwell, L.H.1
-
11
-
-
0036948433
-
Toward maintaining the genome: DNA damage and replication checkpoints
-
DOI 10.1146/annurev.genet.36.060402.113540
-
Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome. DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617-656 (Pubitemid 36109200)
-
(2002)
Annual Review of Genetics
, vol.36
, pp. 617-656
-
-
Nyberg, K.A.1
Michelson, R.J.2
Putnam, C.W.3
Weinert, T.A.4
-
12
-
-
3242880404
-
The role of the DNA double-strand break response network in meiosis
-
DOI 10.1016/j.dnarep.2004.05.007, PII S1568786404001533
-
Richardson, C., Horikoshi, N., and Pandita, T. K. (2004) The role of the DNA double-strand break response network in meiosis. DNA Repair 3, 1149-1164 (Pubitemid 38997959)
-
(2004)
DNA Repair
, vol.3
, Issue.8-9
, pp. 1149-1164
-
-
Richardson, C.1
Horikoshi, N.2
Pandita, T.K.3
-
13
-
-
0034255861
-
Control of elongation by RNA polymerase II
-
DOI 10.1016/S0968-0004(00)01615-7, PII S0968000400016157
-
Conaway, J. W., Shilatifard, A., Dvir, A., and Conaway, R. C. (2000) Control of elongation by RNA polymerase II. Trends Biochem. Sci. 25, 375-380 (Pubitemid 30497247)
-
(2000)
Trends in Biochemical Sciences
, vol.25
, Issue.8
, pp. 375-380
-
-
Conaway, J.W.1
Shilatifard, A.2
Dvir, A.3
Conaway, R.C.4
-
14
-
-
2342465953
-
Recent highlights of RNA-polymerase-II-mediated transcription
-
DOI 10.1016/j.ceb.2004.04.004, PII S0955067404000559
-
Sims, R. J., 3rd, Mandal, S. S., and Reinberg, D. (2004) Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263-271 (Pubitemid 38610406)
-
(2004)
Current Opinion in Cell Biology
, vol.16
, Issue.3
, pp. 263-271
-
-
Sims III, R.J.1
Mandal, S.S.2
Reinberg, D.3
-
15
-
-
0029785723
-
Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis
-
Ljungman, M., and Zhang, F. (1996) Blockage of RNA polymerase as a possible trigger for UV light-induced apoptosis. Oncogene 13, 823-831 (Pubitemid 26312910)
-
(1996)
Oncogene
, vol.13
, Issue.4
, pp. 823-831
-
-
Ljungman, M.1
Zhang, F.2
-
16
-
-
0028030791
-
U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle
-
Yamaizumi, M., and Sugano, T. (1994) UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9, 2775-2784 (Pubitemid 24296751)
-
(1994)
Oncogene
, vol.9
, Issue.10
, pp. 2775-2784
-
-
Yamaizumi, M.1
Sugano, T.2
-
17
-
-
33746488809
-
DNA repair: From molecular mechanism to human disease
-
DOI 10.1016/j.dnarep.2006.05.005, PII S1568786406001455
-
Friedberg, E. C., Aguilera, A., Gellert, M., Hanawalt, P. C., Hays, J. B., Lehmann, A. R., Lindahl, T., Lowndes, N., Sarasin, A., and Wood, R. D. (2006) DNA repair. From molecular mechanism to human disease. DNA Repair 5, 986-996 (Pubitemid 44137486)
-
(2006)
DNA Repair
, vol.5
, Issue.8
, pp. 986-996
-
-
Friedberg, E.C.1
Aguilera, A.2
Gellert, M.3
Hanawalt, P.C.4
Hays, J.B.5
Lehmann, A.R.6
Lindahl, T.7
Lowndes, N.8
Sarasin, A.9
Wood, R.D.10
-
18
-
-
56749157389
-
Transcription-coupled DNA repair. Two decades of progress and surprises
-
Hanawalt, P. C., and Spivak, G. (2008) Transcription-coupled DNA repair. Two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958-970
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 958-970
-
-
Hanawalt, P.C.1
Spivak, G.2
-
19
-
-
0021905437
-
DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
-
Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985)DNA repair in an active gene. Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359-369 (Pubitemid 15138463)
-
(1985)
Cell
, vol.40
, Issue.2
, pp. 359-369
-
-
Bohr, V.A.1
Smith, C.A.2
Okumoto, D.S.3
Hanawalt, P.C.4
-
20
-
-
0034437645
-
Transcription-coupled repair. A multifunctional signaling pathway
-
Leadon, S. A. (2000) Transcription-coupled repair. A multifunctional signaling pathway. Cold Spring Harbor Symp. Quant. Biol. 65, 561-566
-
(2000)
Cold Spring Harbor Symp. Quant. Biol.
, vol.65
, pp. 561-566
-
-
Leadon, S.A.1
-
21
-
-
0023663101
-
Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
-
Mellon, I., Spivak, G., and Hanawalt, P. C. (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241-249
-
(1987)
Cell
, vol.51
, pp. 241-249
-
-
Mellon, I.1
Spivak, G.2
Hanawalt, P.C.3
-
22
-
-
0025316080
-
Site-specific DNA repair at the nucleosome level in a yeast minichromosome
-
Smerdon, M. J., and Thoma, F. (1990) Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61, 675-684
-
(1990)
Cell
, vol.61
, pp. 675-684
-
-
Smerdon, M.J.1
Thoma, F.2
-
23
-
-
0027483691
-
Transcription-coupled DNA repair
-
Sweder, K. S., and Hanawalt, P. C. (1993) Transcription-coupled DNA repair. Science 262, 439-440 (Pubitemid 23353390)
-
(1993)
Science
, vol.262
, Issue.5132
, pp. 439-440
-
-
Sweder, K.S.1
Hanawalt, P.C.2
Buratowski, S.3
-
24
-
-
62349130094
-
DNA repair in mammalian cells. Transcription-coupled DNA repair. Directing your effort where it's most needed
-
Tornaletti, S. (2009) DNA repair in mammalian cells. Transcription- coupled DNA repair. Directing your effort where it's most needed. Cell Mol. Life Sci. 66, 1010-1020
-
(2009)
Cell Mol. Life Sci.
, vol.66
, pp. 1010-1020
-
-
Tornaletti, S.1
-
25
-
-
77950513763
-
Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo
-
Malik, S., Chaurasia, P., Lahudkar, S., Durairaj, G., Shukla, A., and Bhaumik, S. R. (2010) Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res. 38, 1461-1477
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 1461-1477
-
-
Malik, S.1
Chaurasia, P.2
Lahudkar, S.3
Durairaj, G.4
Shukla, A.5
Bhaumik, S.R.6
-
26
-
-
0035201056
-
Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II
-
DOI 10.1128/MCB.21.24.8651-8656.2001
-
Lee, S. K., Yu, S. L., Prakash, L., and Prakash, S. (2001) Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol. Cell Biol. 21, 8651-8656 (Pubitemid 33108621)
-
(2001)
Molecular and Cellular Biology
, vol.21
, Issue.24
, pp. 8651-8656
-
-
Lee, S.-K.1
Yu, S.-L.2
Prakash, L.3
Prakash, S.4
-
27
-
-
0036258264
-
Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases
-
DOI 10.1128/MCB.22.12.4383-4389.2002
-
Lee, S. K., Yu, S. L., Prakash, L., and Prakash, S. (2002) Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol. Cell Biol. 22, 4383-4389 (Pubitemid 34556605)
-
(2002)
Molecular and Cellular Biology
, vol.22
, Issue.12
, pp. 4383-4389
-
-
Lee, S.-K.1
Yu, S.-L.2
Prakash, L.3
Prakash, S.4
-
29
-
-
0033806183
-
ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
-
Citterio, E., Van Den Boom, V., Schnitzler, G., Kanaar, R., Bonte, E., Kingston, R. E., Hoeijmakers, J. H., and Vermeulen, W. (2000) ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription- coupling factor. Mol. Cell Biol. 20, 7643-7653
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 7643-7653
-
-
Citterio, E.1
Van Den Boom, V.2
Schnitzler, G.3
Kanaar, R.4
Bonte, E.5
Kingston, R.E.6
Hoeijmakers, J.H.7
Vermeulen, W.8
-
30
-
-
3042652965
-
In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand
-
DOI 10.1111/j.1365-2958.2004.04081.x
-
Bucheli, M., and Sweder, K. (2004) In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol. Microbiol. 52, 1653-1663 (Pubitemid 38822675)
-
(2004)
Molecular Microbiology
, vol.52
, Issue.6
, pp. 1653-1663
-
-
Bucheli, M.1
Sweder, K.2
-
31
-
-
43749113610
-
Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo
-
Malik, S., Bagla, S., Chaurasia, P., Duan, Z., and Bhaumik, S. R. (2008) Elongating RNA polymerase II is disassembled through specific degradation of its largest but not other subunits in response to DNA damage in vivo. J. Biol. Chem. 283, 6897-6905
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 6897-6905
-
-
Malik, S.1
Bagla, S.2
Chaurasia, P.3
Duan, Z.4
Bhaumik, S.R.5
-
32
-
-
0026647859
-
Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells
-
Christians, F. C., and Hanawalt, P. C. (1992) Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells. Mutat. Res. 274, 93-101
-
(1992)
Mutat. Res.
, vol.274
, pp. 93-101
-
-
Christians, F.C.1
Hanawalt, P.C.2
-
33
-
-
0037007036
-
Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro
-
DOI 10.1073/pnas.072068399
-
Lee, K. B., Wang, D., Lippard, S. J., and Sharp, P. A. (2002) Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl. Acad. Sci. U.S.A. 99, 4239-4244 (Pubitemid 34285970)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.7
, pp. 4239-4244
-
-
Lee, K.-B.1
Wang, D.2
Lippard, S.J.3
Sharp, P.A.4
-
34
-
-
0026486603
-
Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
-
Sweder, K. S., and Hanawalt, P. C. (1992) Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. U.S.A. 89, 10696-10700
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 10696-10700
-
-
Sweder, K.S.1
Hanawalt, P.C.2
-
35
-
-
4544243741
-
Transcription activities at 8-oxoG lesions in DNA
-
DOI 10.1016/j.dnarep.2004.06.008, PII S1568786404001831
-
Larsen, E., Kwon, K., Coin, F., Egly, J. M., and Klungland, A. (2004) Transcription activities at 8-oxoG lesions in DNA. DNA Repair 3, 1457-1468 (Pubitemid 39221743)
-
(2004)
DNA Repair
, vol.3
, Issue.11
, pp. 1457-1468
-
-
Larsen, E.1
Kwon, K.2
Coin, F.3
Egly, J.-M.4
Klungland, A.5
-
36
-
-
79953176665
-
Preferential repair of oxidized base damage in the transcribed genes of mammalian cells
-
Banerjee, D., Mandal, S. M., Das, A., Hegde, M. L., Das, S., Bhakat, K. K., Boldogh, I., Sarkar, P. S., Mitra, S., and Hazra, T. K. (2011) Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J. Biol. Chem. 286, 6006-6016
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6006-6016
-
-
Banerjee, D.1
Mandal, S.M.2
Das, A.3
Hegde, M.L.4
Das, S.5
Bhakat, K.K.6
Boldogh, I.7
Sarkar, P.S.8
Mitra, S.9
Hazra, T.K.10
-
37
-
-
0034437623
-
Transcription-coupled repair of oxidative dna damage in human cells: Mechanisms and consequences
-
Tsutakawa, S. E., and Cooper, P. K. (2000) Transcription-coupled repair of oxidative DNA damage in human cells. Mechanisms and consequences. Cold Spring Harbor Symp. Quant. Biol. 65, 201-215 (Pubitemid 32611941)
-
(2000)
Cold Spring Harbor Symposia on Quantitative Biology
, vol.65
, pp. 201-215
-
-
Tsutakawa, S.E.1
Cooper, P.K.2
-
38
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
DOI 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
-
Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961 (Pubitemid 28328001)
-
(1998)
Yeast
, vol.14
, Issue.10
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie III, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
39
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
40
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of non-homologous endjoining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore, J. K., and Haber, J. E. (1996) Cell cycle and genetic requirements of two pathways of non-homologous endjoining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164-2173
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
41
-
-
0036838096
-
Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo
-
Bhaumik, S. R., and Green, M. R. (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol. Cell Biol. 22, 7365-7371
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 7365-7371
-
-
Bhaumik, S.R.1
Green, M.R.2
-
42
-
-
0347381288
-
Interaction of Gal4p with Components of Transcription Machinery In Vivo
-
DOI 10.1016/S0076-6879(03)70038-X
-
Bhaumik, S. R., and Green, M. R. (2003) Interaction of Gal4p with components of transcription machinery in vivo. Methods Enzymol. 370, 445-454 (Pubitemid 37542801)
-
(2003)
Methods in Enzymology
, vol.370
, pp. 445-454
-
-
Bhaumik, S.R.1
Green, M.R.2
-
43
-
-
33646248115
-
Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo
-
Shukla, A., Stanojevic, N., Duan, Z., Sen, P., and Bhaumik, S. R. (2006) Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol. Cell Biol. 26, 3339-3352
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 3339-3352
-
-
Shukla, A.1
Stanojevic, N.2
Duan, Z.3
Sen, P.4
Bhaumik, S.R.5
-
44
-
-
1042289670
-
In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer
-
DOI 10.1101/gad.1148404
-
Bhaumik, S. R., Raha, T., Aiello, D. P., and Green, M. R. (2004) In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18, 333-343 (Pubitemid 38199257)
-
(2004)
Genes and Development
, vol.18
, Issue.3
, pp. 333-343
-
-
Bhaumik, S.R.1
Raha, T.2
Aiello, D.P.3
Green, M.R.4
-
45
-
-
0026021355
-
A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1
-
Peterson, C. L., Kruger, W., and Herskowitz, I. (1991) A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64, 1135-1143 (Pubitemid 121001200)
-
(1991)
Cell
, vol.64
, Issue.6
, pp. 1135-1143
-
-
Peterson, C.L.1
Kruger, W.2
Herskowitz, I.3
-
46
-
-
0004270170
-
-
Wiley, New York
-
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., and Struhl, K. (2001) Current Protocols in Molecular Biology, Wiley, New York
-
(2001)
Current Protocols in Molecular Biology
-
-
Ausubel, F.M.1
Brent, R.2
Kingston, R.E.3
Moore, D.D.4
Seidman, J.G.5
Struhl, K.6
-
47
-
-
0026733077
-
The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia
-
Pandita, T. K., and Hittelman, W. N. (1992) The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat Res. 131, 214-223
-
(1992)
Radiat Res.
, vol.131
, pp. 214-223
-
-
Pandita, T.K.1
Hittelman, W.N.2
-
48
-
-
0032567081
-
Dissecting the regulatory circuitry of a eukaryotic genome
-
Holstege, F. C., Jennings, E. G., Wyrick, J. J., Lee, T. I., Hengartner, C. J., Green, M. R., Golub, T. R., Lander, E. S., and Young, R. A. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728 (Pubitemid 28544132)
-
(1998)
Cell
, vol.95
, Issue.5
, pp. 717-728
-
-
Holstege, F.C.P.1
Jennings, E.G.2
Wyrick, J.J.3
Lee, T.I.4
Hengartner, C.J.5
Green, M.R.6
Golub, T.R.7
Lander, E.S.8
Young, R.A.9
-
49
-
-
36849046285
-
Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated by COMPASS
-
DOI 10.1016/j.cell.2007.09.046, PII S0092867407013505
-
Lee, J. S., Shukla, A., Schneider, J., Swanson, S. K., Washburn, M. P., Florens, L., Bhaumik, S. R., and Shilatifard, A. (2007) Translating histone cross-talk between H2B monoubiquitination and H3 methylation by COMPASS and Dot1. Cell 131, 1084-1096 (Pubitemid 350235018)
-
(2007)
Cell
, vol.131
, Issue.6
, pp. 1084-1096
-
-
Lee, J.-S.1
Shukla, A.2
Schneider, J.3
Swanson, S.K.4
Washburn, M.P.5
Florens, L.6
Bhaumik, S.R.7
Shilatifard, A.8
-
50
-
-
0034686001
-
Distinct classes of yeast promoters revealed by differential TAF recruitment
-
DOI 10.1126/science.288.5469.1242
-
Li, X. Y., Bhaumik, S. R., and Green, M. R. (2000) Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288, 1242-1244 (Pubitemid 30367201)
-
(2000)
Science
, vol.288
, Issue.5469
, pp. 1242-1244
-
-
Li, X.-Y.1
Bhaumik, S.R.2
Green, M.R.3
-
51
-
-
75349098018
-
A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome
-
Jiang, C., and Pugh, B. F. (2009) A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109
-
(2009)
Genome Biol.
, vol.10
-
-
Jiang, C.1
Pugh, B.F.2
-
52
-
-
0035423749
-
SAGA is an essential in vivo target of the yeast acidic activator Gal4p
-
DOI 10.1101/gad.911401
-
Bhaumik, S. R., and Green, M. R. (2001) SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15, 1935-1945 (Pubitemid 32738623)
-
(2001)
Genes and Development
, vol.15
, Issue.15
, pp. 1935-1945
-
-
Bhaumik, S.R.1
Green, M.R.2
-
53
-
-
10944224673
-
INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair
-
DOI 10.1016/j.cell.2004.11.037, PII S0092867404011055
-
Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J. E., and Shen, X. (2004) INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767-775 (Pubitemid 40017684)
-
(2004)
Cell
, vol.119
, Issue.6
, pp. 767-775
-
-
Morrison, A.J.1
Highland, J.2
Krogan, N.J.3
Arbel-Eden, A.4
Greenblatt, J.F.5
Haber, J.E.6
Shen, X.7
-
54
-
-
10944233962
-
Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
-
DOI 10.1016/j.cell.2004.11.033, PII S0092867404011018
-
van Attikum, H., Fritsch, O., Hohn, B., and Gasser, S. M. (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777-788 (Pubitemid 40017685)
-
(2004)
Cell
, vol.119
, Issue.6
, pp. 777-788
-
-
Van Attikum, H.1
Fritsch, O.2
Hohn, B.3
Gasser, S.M.4
-
55
-
-
27844607415
-
Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae
-
DOI 10.1038/nature04148, PII N04148
-
Tsukuda, T., Fleming, A. B., Nickoloff, J. A., and Osley, M. A. (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379-383 (Pubitemid 41643956)
-
(2005)
Nature
, vol.438
, Issue.7066
, pp. 379-383
-
-
Tsukuda, T.1
Fleming, A.B.2
Nickoloff, J.A.3
Osley, M.A.4
-
56
-
-
68849132163
-
Rad52
-
Mortensen, U. H., Lisby, M., and Rothstein, R. (2009) Rad52. Curr. Biol. 19, R676-677
-
(2009)
Curr. Biol.
, vol.19
-
-
Mortensen, U.H.1
Lisby, M.2
Rothstein, R.3
-
57
-
-
80555156087
-
Sub1 and RPA associate with RNA polymerase II at different stages of transcription
-
Sikorski, T. W., Ficarro, S. B., Holik, J., Kim, T., Rando, O. J., Marto, J. A., and Buratowski, S. (2011) Sub1 and RPA associate with RNA polymerase II at different stages of transcription. Mol. Cell, 44, 397-409
-
(2011)
Mol. Cell
, vol.44
, pp. 397-409
-
-
Sikorski, T.W.1
Ficarro, S.B.2
Holik, J.3
Kim, T.4
Rando, O.J.5
Marto, J.A.6
Buratowski, S.7
-
58
-
-
59649124959
-
The INO80 chromatin remodeling complex in transcription, replication and repair
-
Conaway, R. C., and Conaway, J. W. (2009) The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem. Sci. 34, 71-77
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 71-77
-
-
Conaway, R.C.1
Conaway, J.W.2
-
59
-
-
70249142494
-
Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae
-
Klopf, E., Paskova, L., Solé, C., Mas, G., Petryshyn, A., Posas, F., Wintersberger, U., Ammerer, G., and Schüller, C. (2009) Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 29, 4994-5007
-
(2009)
Mol. Cell Biol.
, vol.29
, pp. 4994-5007
-
-
Klopf, E.1
Paskova, L.2
Solé, C.3
Mas, G.4
Petryshyn, A.5
Posas, F.6
Wintersberger, U.7
Ammerer, G.8
Schüller, C.9
-
60
-
-
84860380222
-
Rad26p regulates the occupancy of histone H2A-H2B dimer at the active genes in vivo
-
Malik, S., Chaurasia, P., Lahudkar, S., Uprety, B., and Bhaumik, S. R. (2012) Rad26p regulates the occupancy of histone H2A-H2B dimer at the active genes in vivo. Nucleic Acids Research 40, 3348-3363
-
(2012)
Nucleic Acids Research
, vol.40
, pp. 3348-3363
-
-
Malik, S.1
Chaurasia, P.2
Lahudkar, S.3
Uprety, B.4
Bhaumik, S.R.5
-
61
-
-
84864429697
-
Rad26p, a transcription-coupled repair factor, promotes the eviction and prevents the reassociation of histone H2A-H2B dimer during transcriptional elongation in vivo
-
in press
-
Malik, S., and Bhaumik, S. R. (2012) Rad26p, a transcription-coupled repair factor, promotes the eviction and prevents the reassociation of histone H2A-H2B dimer during transcriptional elongation in vivo. Biochemistry, in press
-
(2012)
Biochemistry
-
-
Malik, S.1
Bhaumik, S.R.2
-
62
-
-
84855807364
-
Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins
-
He, Y., Swaminathan, A., and Lopes, J. M. (2012) Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol. Microbiol. 83, 395-407
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 395-407
-
-
He, Y.1
Swaminathan, A.2
Lopes, J.M.3
-
63
-
-
34948875399
-
Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo
-
DOI 10.1074/jbc.M700623200
-
Barbaric, S., Luckenbach, T., Schmid, A., Blaschke, D., Hörz, W., and Korber, P. (2007) Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J. Biol. Chem. 282, 27610-27621 (Pubitemid 47529480)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.38
, pp. 27610-27621
-
-
Barbaric, S.1
Luckenbach, T.2
Schmid, A.3
Blaschke, D.4
Horz, W.5
Korber, P.6
-
64
-
-
34548717647
-
Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators
-
DOI 10.1128/MCB.00981-07
-
Adkins, M. W., Williams, S. K., Linger, J., and Tyler, J. K. (2007) Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol. Cell Biol. 27, 6372-6382 (Pubitemid 47435744)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.18
, pp. 6372-6382
-
-
Adkins, M.W.1
Williams, S.K.2
Linger, J.3
Tyler, J.K.4
-
65
-
-
0031788832
-
A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae
-
Lau, W. W., Schneider, K. R., and O'Shea, E. K. (1998) A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae. Genetics 150, 1349-1359 (Pubitemid 28555541)
-
(1998)
Genetics
, vol.150
, Issue.4
, pp. 1349-1359
-
-
Lau, W.-T.W.1
Schneider, K.R.2
O'Shea, E.K.3
|