-
2
-
-
0012610155
-
Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory
-
10.1016/0022-247X(80)90297-8 564002
-
Bloom F., Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory. Journal of Mathematical Analysis and Applications 1980 73 2 524 542 10.1016/0022-247X(80) 90297-8 564002
-
(1980)
Journal of Mathematical Analysis and Applications
, vol.73
, Issue.2
, pp. 524-542
-
-
Bloom, F.1
-
3
-
-
21144474593
-
Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones
-
10.1137/0524008 1199530 ZBL0767.45005
-
Holmåker K., Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones. SIAM Journal on Mathematical Analysis 1993 24 1 116 128 10.1137/0524008 1199530 ZBL0767.45005
-
(1993)
SIAM Journal on Mathematical Analysis
, vol.24
, Issue.1
, pp. 116-128
-
-
Holmåker, K.1
-
4
-
-
0031124229
-
Calculating current densities and fields produced by shielded magnetic resonance imaging probes
-
PII S0036139995283110
-
Forbes L. K., Crozier S., Doddrell D. M., Calculating current densities and fields produced by shielded magnetic resonance imaging probes. SIAM Journal on Applied Mathematics 1997 57 2 401 425 10.1137/S0036139995283110 1438760 (Pubitemid 127577098)
-
(1997)
SIAM Journal on Applied Mathematics
, vol.57
, Issue.2
, pp. 401-425
-
-
Forbes, L.K.1
Crozier, S.2
Doddrell, D.M.3
-
6
-
-
0039774654
-
Boundary value problems for higher order integro-differential equations
-
10.1016/0362-546X(83)90070-6 693443 ZBL0505.45002
-
Agarwal R. P., Boundary value problems for higher order integro-differential equations. Nonlinear Analysis 1983 7 3 259 270 10.1016/0362-546X(83)90070-6 693443 ZBL0505.45002
-
(1983)
Nonlinear Analysis
, vol.7
, Issue.3
, pp. 259-270
-
-
Agarwal, R.P.1
-
8
-
-
35348895685
-
The unique solution of boundary value problems for nonlinear second-order integral-differential equations of mixed type in Banach spaces
-
DOI 10.1016/j.camwa.2007.04.018, PII S0898122107003677
-
Wang Z., Liu L., Wu Y., The unique solution of boundary value problems for nonlinear second-order integral-differential equations of mixed type in Banach spaces. Computers & Mathematics with Applications 2007 54 9-10 1293 1301 10.1016/j.camwa.2007.04.018 2397681 ZBL1156.34051 (Pubitemid 47576573)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.9-10
, pp. 1293-1301
-
-
Wang, Z.1
Liu, L.2
Wu, Y.3
-
9
-
-
77950300524
-
Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients
-
10.1016/j.camwa.2010.02.018 2608006 ZBL1193.65229
-
Saadatmandi A., Dehghan M., Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Computers & Mathematics with Applications 2010 59 8 2996 3004 10.1016/j.camwa.2010.02.018 2608006 ZBL1193.65229
-
(2010)
Computers & Mathematics with Applications
, vol.59
, Issue.8
, pp. 2996-3004
-
-
Saadatmandi, A.1
Dehghan, M.2
-
10
-
-
33744519384
-
Compact finite difference method for integro-differential equations
-
DOI 10.1016/j.amc.2005.11.007, PII S0096300305009094
-
Zhao J., Corless R. M., Compact finite difference method for integro-differential equations. Applied Mathematics & Computation 2006 177 1 271 288 10.1016/j.amc.2005.11.007 2234518 ZBL1102.65144 (Pubitemid 43815532)
-
(2006)
Applied Mathematics and Computation
, vol.177
, Issue.1
, pp. 271-288
-
-
Zhao, J.1
Corless, R.M.2
-
11
-
-
80052022098
-
Monotone iterative sequences for nonlinear integro-differential equations of second order
-
10.1016/j.nonrwa.2011.06.023 2833000 ZBL1231.45016
-
Al-Mdallal Q. M., Monotone iterative sequences for nonlinear integro-differential equations of second order. Nonlinear Analysis 2011 12 6 3665 3673 10.1016/j.nonrwa.2011.06.023 2833000 ZBL1231.45016
-
(2011)
Nonlinear Analysis
, vol.12
, Issue.6
, pp. 3665-3673
-
-
Al-Mdallal, Q.M.1
-
13
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
10.1016/S0096-3003(02)00790-7 2012589 ZBL1086.35005
-
Liao S., On the homotopy analysis method for nonlinear problems. Applied Mathematics & Computation 2004 147 2 499 513 10.1016/S0096-3003(02)00790-7 2012589 ZBL1086.35005
-
(2004)
Applied Mathematics & Computation
, vol.147
, Issue.2
, pp. 499-513
-
-
Liao, S.1
-
14
-
-
0032285655
-
Homotopy analysis method: A new analytic method for nonlinear problems
-
10.1007/BF02457955 1675887 ZBL1126.34311
-
Liao S. J., Homotopy analysis method: a new analytic method for nonlinear problems. Applied Mathematics & Mechanics 1998 19 10 957 962 10.1007/BF02457955 1675887 ZBL1126.34311
-
(1998)
Applied Mathematics & Mechanics
, vol.19
, Issue.10
, pp. 957-962
-
-
Liao, S.J.1
-
15
-
-
0037300634
-
Homotopy analysis of nonlinear progressive waves in deep water
-
DOI 10.1023/A:1022189509293
-
Liao S. J., Cheung K. F., Homotopy analysis of nonlinear progressive waves in deep water. Journal of Engineering Mathematics 2003 45 2 105 116 10.1023/A:1022189509293 1958069 ZBL1112.76316 (Pubitemid 36352562)
-
(2003)
Journal of Engineering Mathematics
, vol.45
, Issue.2
, pp. 105-116
-
-
Liao, S.-J.1
Cheung, K.F.2
-
16
-
-
33748300795
-
Series solutions of unsteady boundary-layer flows over a stretching flat plate
-
DOI 10.1111/j.1467-9590.2006.00354.x
-
Liao S., Series solutions of unsteady boundary-layer flows over a stretching flat plate. Studies in Applied Mathematics 2006 117 3 239 263 10.1111/j.1467-9590.2006.00354.x 2257099 ZBL1145.76352 (Pubitemid 44327609)
-
(2006)
Studies in Applied Mathematics
, vol.117
, Issue.3
, pp. 239-263
-
-
Liao, S.1
-
17
-
-
17644421077
-
Solving solitary waves with discontinuity by means of the homotopy analysis method
-
DOI 10.1016/j.chaos.2004.12.016, PII S0960077905000524
-
Wu W., Liao S. J., Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons and Fractals 2005 26 1 177 185 2-s2.0-17644421077 10.1016/j.chaos.2004.12.016 ZBL1071.76009 (Pubitemid 40556381)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.1
, pp. 177-185
-
-
Wu, W.1
Liao, S.-J.2
-
18
-
-
27144505139
-
Solving the Klein-Gordon equation by means of the homotopy analysis method
-
DOI 10.1016/j.amc.2004.09.056, PII S0096300304007799
-
Sun Q., Solving the Klein-Gordon equation by means of the homotopy analysis method. Applied Mathematics & Computation 2005 169 1 355 365 10.1016/j.amc.2004.09.056 2171153 ZBL1078.35105 (Pubitemid 41491859)
-
(2005)
Applied Mathematics and Computation
, vol.169
, Issue.1
, pp. 355-365
-
-
Sun, Q.1
-
19
-
-
34547420243
-
An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method
-
10.1088/1751-8113/40/29/015 2371242
-
Yabushita K., Yamashita M., Tsuboi K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. Journal of Physics A 2007 40 29 8403 8416 10.1088/1751-8113/40/29/015 2371242
-
(2007)
Journal of Physics A
, vol.40
, Issue.29
, pp. 8403-8416
-
-
Yabushita, K.1
Yamashita, M.2
Tsuboi, K.3
-
20
-
-
69249202653
-
The homotopy analysis method for handling systems of fractional differential equations
-
10.1016/j.apm.2009.03.024 2566678 ZBL1185.65140
-
Zurigat M., Momani S., Odibat Z., Alawneh A., The homotopy analysis method for handling systems of fractional differential equations. Applied Mathematical Modelling 2010 34 1 24 35 10.1016/j.apm.2009.03.024 2566678 ZBL1185.65140
-
(2010)
Applied Mathematical Modelling
, vol.34
, Issue.1
, pp. 24-35
-
-
Zurigat, M.1
Momani, S.2
Odibat, Z.3
Alawneh, A.4
-
21
-
-
70350378693
-
A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
-
10.1016/j.apm.2009.06.025 2563341 ZBL1185.65139
-
Odibat Z., Momani S., Xu H., A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Applied Mathematical Modelling 2010 34 3 593 600 10.1016/j.apm.2009.06.025 2563341 ZBL1185.65139
-
(2010)
Applied Mathematical Modelling
, vol.34
, Issue.3
, pp. 593-600
-
-
Odibat, Z.1
Momani, S.2
Xu, H.3
-
23
-
-
74149089078
-
Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method
-
10.1016/j.camwa.2009.07.002 2579484 ZBL1189.65187
-
Zurigat M., Momani S., Alawneh A., Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method. Computers & Mathematics with Applications 2010 59 3 1227 1235 10.1016/j.camwa.2009.07.002 2579484 ZBL1189.65187
-
(2010)
Computers & Mathematics with Applications
, vol.59
, Issue.3
, pp. 1227-1235
-
-
Zurigat, M.1
Momani, S.2
Alawneh, A.3
-
24
-
-
84867782673
-
Solution of the fractional epidemic model by homotopy analysis method
-
In press
-
Arqub O. Abu, El-Ajou A., Solution of the fractional epidemic model by homotopy analysis method. Journal of King Saud University. In press
-
Journal of King Saud University
-
-
Arqub, O.A.1
El-Ajou, A.2
-
25
-
-
79958780765
-
A new analytical technique to solve Volterra's integral equations
-
10.1002/mma.1436 2838775 ZBL1239.65084
-
Vosughi H., Shivanian E., Abbasbandy S., A new analytical technique to solve Volterra's integral equations. Mathematical Methods in the Applied Sciences 2011 34 10 1243 1253 10.1002/mma.1436 2838775 ZBL1239.65084
-
(2011)
Mathematical Methods in the Applied Sciences
, vol.34
, Issue.10
, pp. 1243-1253
-
-
Vosughi, H.1
Shivanian, E.2
Abbasbandy, S.3
-
26
-
-
84867836823
-
Analytic-approximate solution for an integro-differential equation arising in oscillating magnetic fields using homotopy analysis method
-
Nik H. S., Effati S., Buzhabadi R., Analytic-approximate solution for an integro-differential equation arising in oscillating magnetic fields using homotopy analysis method. Iranian Journal of Optimization 2010 2 3 518 535
-
(2010)
Iranian Journal of Optimization
, vol.2
, Issue.3
, pp. 518-535
-
-
Nik, H.S.1
Effati, S.2
Buzhabadi, R.3
-
27
-
-
80052264178
-
Approximations of the nonlinear Volterra's population model by an efficient numerical method
-
10.1002/mma.1479 2833826 ZBL1223.92047
-
Khan N. A., Ara A., Jamil M., Approximations of the nonlinear Volterra's population model by an efficient numerical method. Mathematical Methods in the Applied Sciences 2011 34 14 1733 1738 10.1002/mma.1479 2833826 ZBL1223.92047
-
(2011)
Mathematical Methods in the Applied Sciences
, vol.34
, Issue.14
, pp. 1733-1738
-
-
Khan, N.A.1
Ara, A.2
Jamil, M.3
-
28
-
-
73249125695
-
Homotopy analysis method for systems of fractional integro-differential equations
-
2588351 ZBL1180.65181
-
Zurigat M., Momani S., Alawneh A., Homotopy analysis method for systems of fractional integro-differential equations. Neural, Parallel & Scientific Computations 2009 17 2 169 186 2588351 ZBL1180.65181
-
(2009)
Neural, Parallel & Scientific Computations
, vol.17
, Issue.2
, pp. 169-186
-
-
Zurigat, M.1
Momani, S.2
Alawneh, A.3
-
30
-
-
64549148828
-
Series solutions of non-linear Riccati differential equations with fractional order
-
10.1016/j.chaos.2007.04.018 2517912 ZBL1197.34006
-
Cang J., Tan Y., Xu H., Liao S. J., Series solutions of non-linear Riccati differential equations with fractional order. Chaos, Solitons and Fractals 2009 40 1 1 9 10.1016/j.chaos.2007.04.018 2517912 ZBL1197.34006
-
(2009)
Chaos, Solitons and Fractals
, vol.40
, Issue.1
, pp. 1-9
-
-
Cang, J.1
Tan, Y.2
Xu, H.3
Liao, S.J.4
-
31
-
-
34249806325
-
Derivation of the Adomian decomposition method using the homotopy analysis method
-
DOI 10.1016/j.amc.2006.12.074, PII S0096300307000227
-
Allan F. M., Derivation of the Adomian decomposition method using the homotopy analysis method. Applied Mathematics & Computation 2007 190 1 6 14 10.1016/j.amc.2006.12.074 2335425 ZBL1125.65063 (Pubitemid 46856640)
-
(2007)
Applied Mathematics and Computation
, vol.190
, Issue.1
, pp. 6-14
-
-
Allan, F.M.1
|