-
2
-
-
78649535365
-
Population growth in a closed system
-
Small RD,. Population growth in a closed system. SIAM Review 1983; 25 1: 93-95.
-
(1983)
SIAM Review
, vol.25
, Issue.1
, pp. 93-95
-
-
Small, R.D.1
-
3
-
-
0347758632
-
Rational Chebyshev tau method for solving Volterra's population model
-
Parand K, Razzaghi M,. Rational Chebyshev tau method for solving Volterra's population model. Applied Mathematics and Computation 2004; 149: 893-900.
-
(2004)
Applied Mathematics and Computation
, vol.149
, pp. 893-900
-
-
Parand, K.1
Razzaghi, M.2
-
4
-
-
0031238061
-
Numerical and analytical solutions of Volterra's population model
-
Te Beest KG,. Numerical and analytical solutions of Volterra's population model. SIAM Review 1997; 39 3: 484-493.
-
(1997)
SIAM Review
, vol.39
, Issue.3
, pp. 484-493
-
-
Te Beest, K.G.1
-
5
-
-
9544231668
-
Numerical approximations for population growth models
-
Al-Khaled K,. Numerical approximations for population growth models. Applied Mathematics and Computation 2005; 160 3: 865-873.
-
(2005)
Applied Mathematics and Computation
, vol.160
, Issue.3
, pp. 865-873
-
-
Al-Khaled, K.1
-
6
-
-
0002811385
-
Analytical approximations and Padé approximants for Volterra's population model
-
Wazwaz AM,. Analytical approximations and Padé approximants for Volterra's population model. Applied Mathematics and Computation 1999; 100 1: 13-25.
-
(1999)
Applied Mathematics and Computation
, vol.100
, Issue.1
, pp. 13-25
-
-
Wazwaz, A.M.1
-
7
-
-
38849189268
-
Solving Volterra's population model using new second derivative multistep methods
-
Parand K, Hojjati G,. Solving Volterra's population model using new second derivative multistep methods. American Journal of Applieed Sciences 2008; 5 8: 1019-1022.
-
(2008)
American Journal of Applieed Sciences
, vol.5
, Issue.8
, pp. 1019-1022
-
-
Parand, K.1
Hojjati, G.2
-
8
-
-
34147127712
-
Composite spectral functions for solving Volterra's population model
-
DOI 10.1016/j.chaos.2006.03.067, PII S0960077906002852
-
Ramezan M, Razzaghi M, Dehghan M,. Composite spectral functions for solving Volterra's population model. Chaos, Solitons and Fractals 2007; 34 2: 588-593. (Pubitemid 46561300)
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, Issue.2
, pp. 588-593
-
-
Ramezani, M.1
Razzaghi, M.2
Dehghan, M.3
-
9
-
-
78049392226
-
Collocation method using sinc and Rational Legendre functions for solving Volterra's population model
-
Parand K, Delafkar Z, Pakniat N, Pirkhedri A, Haji MK,. Collocation method using sinc and Rational Legendre functions for solving Volterra's population model. Communications in Nonlinear and Science Numerical Simulation 2011; 16: 1811-1819.
-
(2011)
Communications in Nonlinear and Science Numerical Simulation
, vol.16
, pp. 1811-1819
-
-
Parand, K.1
Delafkar, Z.2
Pakniat, N.3
Pirkhedri, A.4
Haji, M.K.5
-
10
-
-
59349086401
-
Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials
-
Marzban HR, Hoseini SM, Razzaghi M,. Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials. Mathematical Methods in the Applied Sciences 2009; 32: 127-134.
-
(2009)
Mathematical Methods in the Applied Sciences
, vol.32
, pp. 127-134
-
-
Marzban, H.R.1
Hoseini, S.M.2
Razzaghi, M.3
-
13
-
-
79955474354
-
An efficient approach for solving the Riccati equation with fractional orders
-
DOI: 10.1016/j.camwa.2011.03017, (to appear in print).
-
Khan NA, Ara A, Jamil M,. An efficient approach for solving the Riccati equation with fractional orders. Computers and Mathematics With Applications, DOI: 10.1016/j.camwa.2011.03017, (to appear in print).
-
Computers and Mathematics with Applications
-
-
Khan, N.A.1
Ara, A.2
Jamil, M.3
-
16
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for non-linear problems
-
He JH,. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-linear Mechanics 2000; 35: 37-43.
-
(2000)
International Journal of Non-linear Mechanics
, vol.35
, pp. 37-43
-
-
He, J.H.1
-
17
-
-
0037440579
-
Homotopy perturbation method: A new nonlinear analytical technique
-
He JH,. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation 2003; 135: 73-79.
-
(2003)
Applied Mathematics and Computation
, vol.135
, pp. 73-79
-
-
He, J.H.1
-
20
-
-
72449153908
-
Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods
-
Khan NA, Ara A, Ali SA, Mahmood A,. Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods. International Journal of Non-linear Sciences and Numerical Simulation 2009; 10: 1127-1134.
-
(2009)
International Journal of Non-linear Sciences and Numerical Simulation
, vol.10
, pp. 1127-1134
-
-
Khan, N.A.1
Ara, A.2
Ali, S.A.3
Mahmood, A.4
|