-
5
-
-
0003767029
-
Fractional-order systems and fractional-order controllers
-
Report UEF-03-94, Slovak Academy of Sciences, Institute of Experimental Physics, Kosice, Slovakia, November, 18p
-
I. Podlubny, Fractional-order systems and fractional-order controllers, Report UEF-03-94, Slovak Academy of Sciences, Institute of Experimental Physics, Kosice, Slovakia, November 1994, 18p.
-
(1994)
-
-
Podlubny, I.1
-
6
-
-
0002847893
-
Fractional calculus: integral and differential equations of fractional order
-
Carpinteri A., and Mainardi F. (Eds), Springer, New York
-
Gorenflo R., and Mainardi F. Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., and Mainardi F. (Eds). Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer, New York 223-276
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 223-276
-
-
Gorenflo, R.1
Mainardi, F.2
-
7
-
-
0003548431
-
-
Freie Universitat Berlin
-
Y. Luchko, R. Gorenflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint Series A08-98, Fachbereich Mathematik und Informatick, Freie Universitat Berlin, 1998.
-
(1998)
The initial value problem for some fractional differential equations with the Caputo derivative, Preprint Series A08-98, Fachbereich Mathematik und Informatick
-
-
Luchko, Y.1
Gorenflo, R.2
-
8
-
-
0001983732
-
Fractional calculus: some basic problems in continuum and statistical mechanics
-
Carpinteri A., and Mainardi F. (Eds), Springer, New York
-
Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A., and Mainardi F. (Eds). Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer, New York 291-348
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
9
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
Diethelm K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5 (1997) 1-6
-
(1997)
Electron. Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
10
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider W.R., and Wyess W. Fractional diffusion and wave equations. J. Math. Phys. 30 (1989) 134-144
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyess, W.2
-
11
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
Momani S., and Odibat Z. Numerical approach to differential equations of fractional order. Appl. Math. Comput. 207 (2007) 96-110
-
(2007)
Appl. Math. Comput.
, vol.207
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
12
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., and Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365 5-6 (2007) 345-350
-
(2007)
Phys. Lett. A
, vol.365
, Issue.5-6
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
13
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton. Fract. 31 5 (2007) 1248-1255
-
(2007)
Chaos Soliton. Fract.
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
14
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., and Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36 1 (2008) 167-174
-
(2008)
Chaos Soliton. Fract.
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
15
-
-
12244291039
-
Numerical solutions for systems of fractional differential equations by the decomposition method
-
Momani S., and Al-Khaled. Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162 3 (2005) 1351-1365
-
(2005)
Appl. Math. Comput.
, vol.162
, Issue.3
, pp. 1351-1365
-
-
Momani, S.1
Al-Khaled2
-
16
-
-
33746218471
-
Solving a system of nonlinear fractional differential equations using Adomain decomposition
-
Jafari H., and Gejji V.D. Solving a system of nonlinear fractional differential equations using Adomain decomposition. Appl. Math. Comput. 196 (2006) 644-651
-
(2006)
Appl. Math. Comput.
, vol.196
, pp. 644-651
-
-
Jafari, H.1
Gejji, V.D.2
-
17
-
-
33749534281
-
The decomposition method for initial value problems
-
Lensic D. The decomposition method for initial value problems. Appl. Math. Comput. 181 (2006) 206-213
-
(2006)
Appl. Math. Comput.
, vol.181
, pp. 206-213
-
-
Lensic, D.1
-
18
-
-
17944380423
-
The decomposition method for Cauchy advection-diffusion problems
-
Lensic D. The decomposition method for Cauchy advection-diffusion problems. Appl. Math. Comput. 49 4 (2005) 525-537
-
(2005)
Appl. Math. Comput.
, vol.49
, Issue.4
, pp. 525-537
-
-
Lensic, D.1
-
19
-
-
10344238128
-
Adomian decomposition: a tool for solving a system of fractional differential equations
-
Daftardar-Gejji V., and Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301 2 (2005) 508-518
-
(2005)
J. Math. Anal. Appl.
, vol.301
, Issue.2
, pp. 508-518
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
20
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simulat. 1 7 (2006) 15-27
-
(2006)
Int. J. Nonlinear Sci. Numer. Simulat.
, vol.1
, Issue.7
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
21
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton. Fract. 31 (2007) 1248-1255
-
(2007)
Chaos Soliton. Fract.
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
22
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S., and Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355 (2006) 271-279
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
23
-
-
29844442304
-
An iterative method for solving nonlinear functional equations
-
Daftardar-Gejji V., and Jafari H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316 (2006) 753-763
-
(2006)
J. Math. Anal. Appl.
, vol.316
, pp. 753-763
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
26
-
-
0012885756
-
-
Mashinostroyenie, Moscow, in Russian
-
A.V. Karmishin, A.I. Zhukov, V.G. Kolosov, Method of Dynamics Calculation and Testing for Thin-walled Structures, Mashinostroyenie, Moscow, 1990 (in Russian).
-
(1990)
Method of Dynamics Calculation and Testing for Thin-walled Structures
-
-
Karmishin, A.V.1
Zhukov, A.I.2
Kolosov, V.G.3
-
27
-
-
69249221803
-
Series solutions of non-linear Riccati differential equations with fractional order
-
in press
-
J. Cang, Y. Tan, H. Xu, S. Liao, Series solutions of non-linear Riccati differential equations with fractional order, Chaos Soliton. Fract., in press.
-
Chaos Soliton. Fract
-
-
Cang, J.1
Tan, Y.2
Xu, H.3
Liao, S.4
-
28
-
-
0031232480
-
An approximate solution technique which does not depend upon small parameters: a special example
-
Liao S.J. An approximate solution technique which does not depend upon small parameters: a special example. Int. J. Nonlinear Mech. 32 (1997) 815-822
-
(1997)
Int. J. Nonlinear Mech.
, vol.32
, pp. 815-822
-
-
Liao, S.J.1
-
29
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
Liao S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499-513
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
30
-
-
0037170485
-
Analytic solutions of the temperature distribution in Blasius viscous flow problems
-
Liao S.J., and Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453 (2002) 411-425
-
(2002)
J. Fluid Mech.
, vol.453
, pp. 411-425
-
-
Liao, S.J.1
Campo, A.2
-
31
-
-
9544236204
-
Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method
-
Wu Y.Y., and Liao S.J. Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos Soliton. Fract. 23 5 (2004) 1733-1740
-
(2004)
Chaos Soliton. Fract.
, vol.23
, Issue.5
, pp. 1733-1740
-
-
Wu, Y.Y.1
Liao, S.J.2
-
32
-
-
25844456083
-
Comparison between the homotopy analysis method and homotopy perturbation method
-
Liao S.J. Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169 (2005) 1186-1194
-
(2005)
Appl. Math. Comput.
, vol.169
, pp. 1186-1194
-
-
Liao, S.J.1
-
33
-
-
0038519425
-
An analytic approximate approach for free oscillations of self-excited systems
-
Liao S.J. An analytic approximate approach for free oscillations of self-excited systems. Int. J. Nonlinear Mech. 39 2 (2004) 271-280
-
(2004)
Int. J. Nonlinear Mech.
, vol.39
, Issue.2
, pp. 271-280
-
-
Liao, S.J.1
-
34
-
-
0037300634
-
Homotopy analysis of nonlinear progressive waves in deep water
-
Liao S.J., and Cheung K.F. Homotopy analysis of nonlinear progressive waves in deep water. J. Eng. Math. 45 2 (2003) 105-116
-
(2003)
J. Eng. Math.
, vol.45
, Issue.2
, pp. 105-116
-
-
Liao, S.J.1
Cheung, K.F.2
-
35
-
-
0038451464
-
An explicit analytic solution to the Thomas-Fermi equation
-
Liao S.J. An explicit analytic solution to the Thomas-Fermi equation. Appl. Math. Comput. 144 (2003) 495-506
-
(2003)
Appl. Math. Comput.
, vol.144
, pp. 495-506
-
-
Liao, S.J.1
-
36
-
-
33845601283
-
Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method
-
Bouremel Y. Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method. Int. J. Nonlinear Sci. Numer. Simulat. 12 5 (2007) 714-724
-
(2007)
Int. J. Nonlinear Sci. Numer. Simulat.
, vol.12
, Issue.5
, pp. 714-724
-
-
Bouremel, Y.1
-
37
-
-
34347339334
-
Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation
-
Song L., and Zhang H. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys. Lett. A 367 1-2 (2007) 88-94
-
(2007)
Phys. Lett. A
, vol.367
, Issue.1-2
, pp. 88-94
-
-
Song, L.1
Zhang, H.2
-
38
-
-
33845907123
-
The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation
-
Abbasbandy S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys. Lett. A 361 6 (2007) 478-483
-
(2007)
Phys. Lett. A
, vol.361
, Issue.6
, pp. 478-483
-
-
Abbasbandy, S.1
-
39
-
-
33750339270
-
The application of homotopy analysis method to nonlinear equations arising in heat transfer
-
Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360 1 (2006) 109-113
-
(2006)
Phys. Lett. A
, vol.360
, Issue.1
, pp. 109-113
-
-
Abbasbandy, S.1
|