메뉴 건너뛰기




Volumn 4, Issue 4, 2012, Pages 496-518

Finite difference/element method for a two-dimensional modified fractional diffusion equation

Author keywords

Convergence rate; Finite difference method; Finite element method; Modified subdiffusion equation; Stability

Indexed keywords


EID: 84867690690     PISSN: 20700733     EISSN: 20751354     Source Type: Journal    
DOI: 10.4208/aamm.10-m1210     Document Type: Article
Times cited : (99)

References (25)
  • 1
  • 2
    • 84966231734 scopus 로고
    • Some estimates for a weighted L2 projection
    • J. H. BRAMBLE AND J. C. XU, Some estimates for a weighted L2 projection, Math. Comput., 56 (1991), pp. 463-476.
    • (1991) Math. Comput. , vol.56 , pp. 463-476
    • Bramble, J.H.1    Xu, J.C.2
  • 4
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation dscribing sub-diffusion
    • C.-M. CHEN, F. LIU, V. ANH AND L. TURNER, A Fourier method for the fractional diffusion equation dscribing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.-M.1    Liu, F.2    Anh, V.3    Turner, L.4
  • 5
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. DIETHELM, An algorithm for the numerical solution of differential equations of fractional order, Electr. Trans. Numer. Anal., 5 (1997), pp. 1-6.
    • (1997) Electr. Trans. Numer. Anal. , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 6
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time fractional Fokker-Planck equation
    • W. H. DENG, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007), pp. 1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.H.1
  • 7
    • 80052924392 scopus 로고    scopus 로고
    • Finite difference methods and their physical constraints for the fractional Klein-Kramers equation
    • W. H. DENG AND C. LI, Finite difference methods and their physical constraints for the fractional Klein-Kramers equation, Numer. Methods. Partial. Diff. Equations., 27 (2011), pp. 1561-1583.
    • (2011) Numer. Methods. Partial. Diff. Equations. , vol.27 , pp. 1561-1583
    • Deng, W.H.1    Li, C.2
  • 8
    • 0242718371 scopus 로고    scopus 로고
    • Velocity-correction projection method for incompressible flows
    • J. L. GUERMOND AND J. SHEN, Velocity-correction projection method for incompressible flows, SIAM J. Numer. Anal., 41 (2003), pp. 112-134.
    • (2003) SIAM J. Numer. Anal. , vol.41 , pp. 112-134
    • Guermond, J.L.1    Shen, J.2
  • 9
    • 79953248728 scopus 로고    scopus 로고
    • High-order finite element methods for time-fractional partial differential equations
    • Y. JIANG AND J. MA, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), pp. 3285-3290.
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 3285-3290
    • Jiang, Y.1    Ma, J.2
  • 10
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T. A. M. LANGLANDS AND B. I. HENRY, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 11
    • 33646371459 scopus 로고    scopus 로고
    • Solution of a modified fractional diffusion equation
    • T. A. M. LANGLANDS, Solution of a modified fractional diffusion equation, Phys. A., 367 (2006), pp. 136-144.
    • (2006) Phys. A. , vol.367 , pp. 136-144
    • Langlands, T.A.M.1
  • 12
    • 77954143774 scopus 로고    scopus 로고
    • Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
    • X. LI AND C. XU, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051.
    • (2010) Commun. Comput. Phys. , vol.8 , pp. 1016-1051
    • Li, X.1    Xu, C.2
  • 13
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. LIU, C. YANG AND K. BURRAGE, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 231 (2009), pp. 160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 14
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. LIN AND C. XU, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 15
    • 79955669422 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the fractional cable equation
    • Y. LIN, X. LI AND C. XU, Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80 (2011), pp. 1369-1396.
    • (2011) Math. Comput. , vol.80 , pp. 1369-1396
    • Lin, Y.1    Li, X.2    Xu, C.3
  • 16
    • 79955115806 scopus 로고    scopus 로고
    • Finite element approximation for a modified anomalous subdiffusion equation
    • Q. LIU, F. LIU, I. TURNER AND V. ANH, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model., 35 (2011), pp. 4103-4116.
    • (2011) Appl. Math. Model. , vol.35 , pp. 4103-4116
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 17
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • R. METZLER AND J. KLAFTER, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 18
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractonal dynamics
    • R. METZLER AND J. KLAFTER, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractonal dynamics, J. Phys. A. Math. Gen., 37 (2004), pp. 161-208.
    • (2004) J. Phys. A. Math. Gen. , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 22
    • 31144434675 scopus 로고    scopus 로고
    • From diffusion to anomalous diffusion: a century after Einstein's Brownian motion
    • I. M. SOKOLOV AND J. KLAFTER, From diffusion to anomalous diffusion: a century after Einstein's Brownian motion, Chaos., 15 (2005), 026103.
    • (2005) Chaos , vol.15 , pp. 026103
    • Sokolov, I.M.1    Klafter, J.2
  • 23
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equations
    • G. H. GAO AND Z. Z. SUN, A compact difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 24
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new Von Neumanntype stability analysis for fractional diffusion equations
    • S. B. YUSTE AND L. ACEDO, An explicit finite difference method and a new Von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 25
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implticit numerical method for the anomalous subdiffusion equation
    • P. ZHUANG, F. LIU, V. ANH AND I. TURNER, New solution and analytical techniques of the implticit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.