-
1
-
-
0003796630
-
-
Academic Press, New York
-
R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
-
(1975)
Sobolev Spaces
-
-
Adams, R.A.1
-
2
-
-
84966231734
-
Some estimates for a weighted L2 projection
-
J. H. BRAMBLE AND J. C. XU, Some estimates for a weighted L2 projection, Math. Comput., 56 (1991), pp. 463-476.
-
(1991)
Math. Comput.
, vol.56
, pp. 463-476
-
-
Bramble, J.H.1
Xu, J.C.2
-
3
-
-
0003560721
-
-
North-Holland, Amsterdam, New York, Oxford
-
P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
-
(1978)
The Finite Element Method for Elliptic Problems
-
-
Ciarlet, P.G.1
-
4
-
-
36149001420
-
A Fourier method for the fractional diffusion equation dscribing sub-diffusion
-
C.-M. CHEN, F. LIU, V. ANH AND L. TURNER, A Fourier method for the fractional diffusion equation dscribing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, L.4
-
5
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
K. DIETHELM, An algorithm for the numerical solution of differential equations of fractional order, Electr. Trans. Numer. Anal., 5 (1997), pp. 1-6.
-
(1997)
Electr. Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
6
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
W. H. DENG, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007), pp. 1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.H.1
-
7
-
-
80052924392
-
Finite difference methods and their physical constraints for the fractional Klein-Kramers equation
-
W. H. DENG AND C. LI, Finite difference methods and their physical constraints for the fractional Klein-Kramers equation, Numer. Methods. Partial. Diff. Equations., 27 (2011), pp. 1561-1583.
-
(2011)
Numer. Methods. Partial. Diff. Equations.
, vol.27
, pp. 1561-1583
-
-
Deng, W.H.1
Li, C.2
-
8
-
-
0242718371
-
Velocity-correction projection method for incompressible flows
-
J. L. GUERMOND AND J. SHEN, Velocity-correction projection method for incompressible flows, SIAM J. Numer. Anal., 41 (2003), pp. 112-134.
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 112-134
-
-
Guermond, J.L.1
Shen, J.2
-
9
-
-
79953248728
-
High-order finite element methods for time-fractional partial differential equations
-
Y. JIANG AND J. MA, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), pp. 3285-3290.
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 3285-3290
-
-
Jiang, Y.1
Ma, J.2
-
10
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
T. A. M. LANGLANDS AND B. I. HENRY, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
11
-
-
33646371459
-
Solution of a modified fractional diffusion equation
-
T. A. M. LANGLANDS, Solution of a modified fractional diffusion equation, Phys. A., 367 (2006), pp. 136-144.
-
(2006)
Phys. A.
, vol.367
, pp. 136-144
-
-
Langlands, T.A.M.1
-
12
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
X. LI AND C. XU, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051.
-
(2010)
Commun. Comput. Phys.
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
13
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
F. LIU, C. YANG AND K. BURRAGE, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 231 (2009), pp. 160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
14
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. LIN AND C. XU, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
15
-
-
79955669422
-
Finite difference/spectral approximations for the fractional cable equation
-
Y. LIN, X. LI AND C. XU, Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80 (2011), pp. 1369-1396.
-
(2011)
Math. Comput.
, vol.80
, pp. 1369-1396
-
-
Lin, Y.1
Li, X.2
Xu, C.3
-
16
-
-
79955115806
-
Finite element approximation for a modified anomalous subdiffusion equation
-
Q. LIU, F. LIU, I. TURNER AND V. ANH, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model., 35 (2011), pp. 4103-4116.
-
(2011)
Appl. Math. Model.
, vol.35
, pp. 4103-4116
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
17
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
R. METZLER AND J. KLAFTER, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
18
-
-
4043151477
-
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractonal dynamics
-
R. METZLER AND J. KLAFTER, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractonal dynamics, J. Phys. A. Math. Gen., 37 (2004), pp. 161-208.
-
(2004)
J. Phys. A. Math. Gen.
, vol.37
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
21
-
-
2442679060
-
Distributed-order fractional kinetics
-
I. M. SOKOLOV, A. V. CHECHKIN AND J. KLAFTER, Distributed-order fractional kinetics, Acta. Phys. Pol. B., 35 (2004), pp. 1323-1341.
-
(2004)
Acta. Phys. Pol. B.
, vol.35
, pp. 1323-1341
-
-
Sokolov, I.M.1
Chechkin, A.V.2
Klafter, J.3
-
22
-
-
31144434675
-
From diffusion to anomalous diffusion: a century after Einstein's Brownian motion
-
I. M. SOKOLOV AND J. KLAFTER, From diffusion to anomalous diffusion: a century after Einstein's Brownian motion, Chaos., 15 (2005), 026103.
-
(2005)
Chaos
, vol.15
, pp. 026103
-
-
Sokolov, I.M.1
Klafter, J.2
-
23
-
-
78649334165
-
A compact difference scheme for the fractional sub-diffusion equations
-
G. H. GAO AND Z. Z. SUN, A compact difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.H.1
Sun, Z.Z.2
-
24
-
-
25444472344
-
An explicit finite difference method and a new Von Neumanntype stability analysis for fractional diffusion equations
-
S. B. YUSTE AND L. ACEDO, An explicit finite difference method and a new Von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
25
-
-
55549107511
-
New solution and analytical techniques of the implticit numerical method for the anomalous subdiffusion equation
-
P. ZHUANG, F. LIU, V. ANH AND I. TURNER, New solution and analytical techniques of the implticit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|