-
2
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys Rep 339 (2000), 1-77.
-
(2000)
Phys Rep
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
3
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
R. Metzler, and, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J Phys A 37 (2004), 161-208.
-
(2004)
J Phys A
, vol.37
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
4
-
-
0033750050
-
From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation
-
R. Metzler, and, J. Klafter, From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation, J Phys Chem B 104 (2000), 3851-3857.
-
(2000)
J Phys Chem B
, vol.104
, pp. 3851-3857
-
-
Metzler, R.1
Klafter, J.2
-
5
-
-
0034205195
-
Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion
-
R. Metzler, and, J. Klafter, Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys Rev E 61 (2000), 6308-6311.
-
(2000)
Phys Rev e
, vol.61
, pp. 6308-6311
-
-
Metzler, R.1
Klafter, J.2
-
6
-
-
0036791358
-
Combined Hermite spectral-finite difference method for the Fokker-Planck equation
-
J. C. M. Fok, B. Y. Guo, and, T. Tang, Combined Hermite spectral-finite difference method for the Fokker-Planck equation, Math Comp 71 (2001), 1497-1528.
-
(2001)
Math Comp
, vol.71
, pp. 1497-1528
-
-
Fok, J.C.M.1
Guo, B.Y.2
Tang, T.3
-
7
-
-
49749096796
-
Composite generalized Laguerre-Legendre pseudospectral method for Fokker-Planck equation in an infinite channel
-
T. J. Wang, and, B. Y. Guo, Composite generalized Laguerre-Legendre pseudospectral method for Fokker-Planck equation in an infinite channel, Appl Numer Math 58 (2008), 1448-1466.
-
(2008)
Appl Numer Math
, vol.58
, pp. 1448-1466
-
-
Wang, T.J.1
Guo, B.Y.2
-
8
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
S. Chen, F. Liu, P. Zhuang, and, V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl Math Model 33 (2009), 256-273.
-
(2009)
Appl Math Model
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
9
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
W. H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J Comput Phys 227 (2007), 1510-1522.
-
(2007)
J Comput Phys
, vol.227
, pp. 1510-1522
-
-
Deng, W.H.1
-
10
-
-
2142755490
-
Numerical solution of fractional advection-dispersion equation
-
DOI 10.1061/(ASCE)0733-9429(2004)130:5(422)
-
Z. Q. Deng, V. P. Singh, F. Asce, and, L. Bengtsson, Numerical solution of fractional advection-dispersion equations, J Hydraul Eng 130 (2004), 422-431. (Pubitemid 38554545)
-
(2004)
Journal of Hydraulic Engineering
, vol.130
, Issue.5
, pp. 422-431
-
-
Deng, Z.-Q.1
Singh, V.P.2
Bengtsson, L.3
-
11
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
DOI 10.1016/j.jcp.2004.11.025, PII S0021999104004887
-
T. A. M. Langlands, and, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J Comput Phys 205 (2005), 719-736. (Pubitemid 40518394)
-
(2005)
Journal of Computational Physics
, vol.205
, Issue.2
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
12
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
-
M. M. Meerschaert, and, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J Comput Appl Math 172 (2004), 65-77. (Pubitemid 39204390)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, Issue.1
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
13
-
-
64049113904
-
Finite difference approximations for a fractional advection diffusion problem
-
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J Comput Phys 228 (2009), 4038-4054.
-
(2009)
J Comput Phys
, vol.228
, pp. 4038-4054
-
-
Sousa, E.1
-
14
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
DOI 10.1137/030602666
-
S. B. Yuste, and, L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J Numer Anal 42 (2005), 1862-1874. (Pubitemid 41634613)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
15
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
P. Zhuang, F. Liu, V. Anh, and, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J Numer Anal 46 (2008), 1079-1095.
-
(2008)
SIAM J Numer Anal
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J Numer Anal 47 (2008), 204-226.
-
(2008)
SIAM J Numer Anal
, vol.47
, pp. 204-226
-
-
Deng, W.H.1
-
17
-
-
42649109055
-
Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation
-
DOI 10.1137/050642757
-
V. J. Ervin, N. Heuer, and, J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J Numer Anal 45 (2007), 572-591. (Pubitemid 351599168)
-
(2007)
SIAM Journal on Numerical Analysis
, vol.45
, Issue.2
, pp. 572-591
-
-
Ervin, V.J.1
Heuer, N.2
Roop, J.P.3
-
18
-
-
14644446063
-
Least squares finite-element solution of a fractional order two-point boundary value problem
-
DOI 10.1016/j.camwa.2004.10.003, PII S0898122104003438
-
G. J. Fix, and, J. P. Roop, Least squares finite element solution of a fractional order two-point boundary value problem, Comput Math Appl 48 (2004), 1017-1033. (Pubitemid 40319749)
-
(2004)
Computers and Mathematics with Applications
, vol.48
, Issue.7-8
, pp. 1017-1033
-
-
Fix, G.J.1
Roof, J.P.2
-
19
-
-
33845751607
-
A second-order accurate numerical method for a fractional wave equation
-
DOI 10.1007/s00211-006-0045-y
-
W. Melean, and, K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer Math 105 (2007), 481-510. (Pubitemid 44974242)
-
(2007)
Numerische Mathematik
, vol.105
, Issue.3
, pp. 481-510
-
-
McLean, W.1
Mustapha, K.2
-
20
-
-
34547548712
-
Finite difference/spectral approximations for time-fractional diffusion equation
-
Y. Lin, and, C. Xu, Finite difference/spectral approximations for time-fractional diffusion equation, J Comput Phys 225 (2007), 1533-1552.
-
(2007)
J Comput Phys
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
21
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
X. J. Li, and, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J Numer Anal 47 (2009), 2018-2131.
-
(2009)
SIAM J Numer Anal
, vol.47
, pp. 2018-2131
-
-
Li, X.J.1
Xu, C.2
-
22
-
-
37649007901
-
Numerical approach to the fractional Klein-Kramers equation
-
M. Magdziarz, and, A. Weron, Numerical approach to the fractional Klein-Kramers equation, Phys Rev E 76 (2007), 066708.
-
(2007)
Phys Rev e
, vol.76
, pp. 066708
-
-
Magdziarz, M.1
Weron, A.2
-
25
-
-
0000717432
-
Discretized fractional calculus
-
Ch. Lubich, Discretized fractional calculus, SIAM J Math Anal 17 (1986), 704-719.
-
(1986)
SIAM J Math Anal
, vol.17
, pp. 704-719
-
-
Lubich, Ch.1
-
27
-
-
59349102367
-
Ergodic properties of fractional Brownian-Langevin motion
-
W. H. Deng, and, E. Barkai, Ergodic properties of fractional Brownian-Langevin motion, Phys Rev E 79 (2009), 011112.
-
(2009)
Phys Rev e
, vol.79
, pp. 011112
-
-
Deng, W.H.1
Barkai, E.2
|