-
1
-
-
0031212714
-
Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants
-
J. Reifman, "Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants," Nucl. Technol., vol. 119, pp. 76-97, 1997. (Pubitemid 127601958)
-
(1997)
Nuclear Technology
, vol.119
, Issue.1
, pp. 76-97
-
-
Reifman, J.1
-
2
-
-
0030216881
-
Nuclear power plant fault diagnosis using neural networks with error estimation by series association
-
PII S0018949996061977
-
K. Kim and E. Bartlett, "Nuclear power plant fault diagnosis using neural networks with error estimation," IEEE Trans. Nucl. Sci., vol. 43, no. 4, pp. 2373-2388, Aug. 1996. (Pubitemid 126771619)
-
(1996)
IEEE Transactions on Nuclear Science
, vol.43
, Issue.4 PART 2
, pp. 2373-2388
-
-
Kim, K.1
Bartlett, E.B.2
-
3
-
-
2942687569
-
Hybrid identification of nuclear power plant transients with artificial neural networks
-
M. Embrechts and S. Benedek, "Hybrid identification of nuclear power plant transients with artificial neural networks," IEEE Trans. Ind. Electron., vol. 51, pp. 686-693, 2004.
-
(2004)
IEEE Trans. Ind. Electron.
, vol.51
, pp. 686-693
-
-
Embrechts, M.1
Benedek, S.2
-
4
-
-
33746375347
-
A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
-
DOI 10.1109/TNS.2006.871662, 1645061
-
E. Zio, "A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes," IEEE Trans. Nucl. Sci., vol. 53, no. 3, pp. 1460-1478, Jun. 2006. (Pubitemid 44109454)
-
(2006)
IEEE Transactions on Nuclear Science
, vol.53
, Issue.3
, pp. 1460-1478
-
-
Zio, E.1
-
5
-
-
5144232435
-
A fuzzy modeling approach to the identification of transients in nuclear component
-
M. Marseguerra, E. Zio, and P. Baraldi, "A fuzzy modeling approach to the identification of transients in nuclear component," Ann. Nucl. Energy, vol. 31, no. 18, pp. 2093-2112, 2004.
-
(2004)
Ann. Nucl. Energy
, vol.31
, Issue.18
, pp. 2093-2112
-
-
Marseguerra, M.1
Zio, E.2
Baraldi, P.3
-
6
-
-
17744381353
-
Identification of nuclear transients via optimized fuzzy clustering
-
DOI 10.1016/j.anucene.2005.02.012, PII S0306454905000642
-
E. Zio andP. Baraldi, "Identification of nuclear transients via optimized fuzzy clustering," Ann. Nucl. Energy, vol. 32, pp. 1068-1080, 2005. (Pubitemid 40574592)
-
(2005)
Annals of Nuclear Energy
, vol.32
, Issue.10
, pp. 1068-1080
-
-
Zio, E.1
Baraldi, P.2
-
7
-
-
33745525306
-
A fuzzy logic-based model for the classification of faults in the pump seals of the primary heat transport system of a CANDU 6 reactor
-
M. Marseguerra, E. Zio, P. Baraldi, I. Popescu, and P. Ulmeanu, "A fuzzy logic-based model for the classification of faults in the pump seals of the primary heat transport system of a candu 6 reactor," Nucl. Sci. Eng., vol. 153, no. 2, pp. 157-171, 2006. (Pubitemid 43979452)
-
(2006)
Nuclear Science and Engineering
, vol.153
, Issue.2
, pp. 157-171
-
-
Marseguerra, M.1
Zio, E.2
Baraldi, P.3
Popescu, I.C.4
Ulmeanu, P.5
-
8
-
-
23344452126
-
Adaptive fuzzy inference causal graph approach to fault detection and isolation of field devices in nuclear power plants
-
DOI 10.1016/j.pnucene.2005.03.006, PII S0149197005000211, Computational Intelligence in Nuclear Applications: Lessons Learned and Recent Developments
-
K. Zhao and B. Upadhyaya, "Adaptive fuzzy inference causal graph approach to fault detection and isolation of field devices in nuclear power plants," Progress Nucl. Energy, vol. 46, no. 3-4, pp. 226-240, 2005. (Pubitemid 41101266)
-
(2005)
Progress in Nuclear Energy
, vol.46
, Issue.3-4
, pp. 226-240
-
-
Zhao, K.1
Upadhyaya, B.R.2
-
9
-
-
39849092973
-
A fuzzy decision tree for fault classification
-
DOI 10.1111/j.1539-6924.2008.01002.x
-
E. Zio, P. Baraldi, and I. Popescu, "A fuzzy decision tree for fault classification," Risk Anal., vol. 28, no. 1, pp. 49-67, 2008. (Pubitemid 351315502)
-
(2008)
Risk Analysis
, vol.28
, Issue.1
, pp. 49-67
-
-
Zio, E.1
Baraldi, P.2
Popescu, I.C.3
-
10
-
-
67651156789
-
From fuzzy clustering to a rulebased model for fault classification
-
E. Zio, P. Baraldi, and I. Popescu, "From fuzzy clustering to a rulebased model for fault classification," Int. J. Comput. Intell. Syst., vol. 1, no. 1, pp. 60-76, 2008.
-
(2008)
Int. J. Comput. Intell. Syst.
, vol.1
, Issue.1
, pp. 60-76
-
-
Zio, E.1
Baraldi, P.2
Popescu, I.3
-
11
-
-
67651146368
-
A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor
-
E. Zio, P. Baraldi, and I. Popescu, "A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor," Ann. Nucl. Energy, vol. 36, no. 8, pp. 1159-1169, 2009.
-
(2009)
Ann. Nucl. Energy
, vol.36
, Issue.8
, pp. 1159-1169
-
-
Zio, E.1
Baraldi, P.2
Popescu, I.3
-
12
-
-
33644622316
-
Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem
-
C. D. Bocaniala and J. Sa da Costa, "Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem," Control Eng. Practice, vol. 14, no. 6, pp. 653-669, 2006.
-
(2006)
Control Eng. Practice
, vol.14
, Issue.6
, pp. 653-669
-
-
Bocaniala, C.D.1
Sa Da Costa, J.2
-
13
-
-
22344443456
-
Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors
-
DOI 10.1016/j.aei.2005.01.009, PII S147403460500008X
-
A. Evsukoff and S. Gentil, "Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors," Adv. Eng. Inform., vol. 19, no. 1, pp. 55-66, 2005. (Pubitemid 41000266)
-
(2005)
Advanced Engineering Informatics
, vol.19
, Issue.1
, pp. 55-66
-
-
Evsukoff, A.1
Gentil, S.2
-
14
-
-
33644599577
-
Neuro-fuzzy pattern classification for fault diagnosis
-
E. Zio and G. Gola, "Neuro-fuzzy pattern classification for fault diagnosis," Ann. Nucl. Energy, vol. 33, pp. 415-426, 2006.
-
(2006)
Ann. Nucl. Energy
, vol.33
, pp. 415-426
-
-
Zio, E.1
Gola, G.2
-
15
-
-
78249264505
-
Model based fault detection and isolation of a steam generator using neuro-fuzzy networks
-
R. Razavi-Far, H. Davilu, V. Palade, and C. Lucas, "Model based fault detection and isolation of a steam generator using neuro-fuzzy networks," Neurocomput. J., vol. 72, pp. 2939-2951, 2009.
-
(2009)
Neurocomput. J.
, vol.72
, pp. 2939-2951
-
-
Razavi-Far, R.1
Davilu, H.2
Palade, V.3
Lucas, C.4
-
16
-
-
79952450019
-
Bagged ensemble of FCMclassifier for nuclear transient identification
-
P. Baraldi, R. Razavi-Far, and E. Zio, "Bagged ensemble of FCMclassifier for nuclear transient identification," Ann. Nucl. Energy, vol. 38, no. 5, pp. 1161-1171, 2011.
-
(2011)
Ann. Nucl. Energy
, vol.38
, Issue.5
, pp. 1161-1171
-
-
Baraldi, P.1
Razavi-Far, R.2
Zio, E.3
-
17
-
-
0035008798
-
Life-long learning Cell Structures - Continuously learning without catastrophic interference
-
DOI 10.1016/S0893-6080(01)00018-1, PII S0893608001000181
-
F. Hamker, "Life-long learning cell structures-continuously learning without catastrophic interference," Neural Netw., vol. 14, no. 4-5, pp. 551-573, 2001. (Pubitemid 32475862)
-
(2001)
Neural Networks
, vol.14
, Issue.4-5
, pp. 551-573
-
-
Hamker, F.H.1
-
18
-
-
49949150022
-
Language identification in the limit
-
E. M. Gold, "Language identification in the limit," Inf. Control, vol. 10, no. 5, pp. 447-474, 1967.
-
(1967)
Inf. Control
, vol.10
, Issue.5
, pp. 447-474
-
-
Gold, E.M.1
-
19
-
-
79251648542
-
Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions
-
P. Baraldi, R. Razavi-Far, and E. Zio, "Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions," Reliab. Eng. Syst. Safety, vol. 96, no. 4, pp. 480-488, 2010.
-
(2010)
Reliab. Eng. Syst. Safety
, vol.96
, Issue.4
, pp. 480-488
-
-
Baraldi, P.1
Razavi-Far, R.2
Zio, E.3
-
20
-
-
58649083899
-
Learn NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
-
Jan.
-
M. Muhlbaier, A. Topalis, and R. Polikar, "Learn NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 152-168, Jan. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.1
, pp. 152-168
-
-
Muhlbaier, M.1
Topalis, A.2
Polikar, R.3
-
21
-
-
28844431810
-
3-d core studies for hambo simulator
-
Storefjell, Norway, HPR-358, CD-ROM. Sep.
-
E. Puska and S. Norrman, "3-d core studies for hambo simulator," in Proc. Enlarged Halden Group Meeting, Storefjell, Norway, HPR-358, CD-ROM., Sep. 2002, vol. 2, pp. 8-13.
-
(2002)
Proc. Enlarged Halden Group Meeting
, vol.2
, pp. 8-13
-
-
Puska, E.1
Norrman, S.2
-
22
-
-
84858427004
-
Diagnosing faults in nuclear components by an ensemble of feature-diverse fuzzy classifiers
-
E. Zio, P. Baraldi, G. Gola, D. Roverso, and M. Hoffmann, "Diagnosing faults in nuclear components by an ensemble of feature-diverse fuzzy classifiers," Int. J. Nucl. Knowl. Manage., vol. 2, no. 3, pp. 224-238, 2007.
-
(2007)
Int. J. Nucl. Knowl. Manage.
, vol.2
, Issue.3
, pp. 224-238
-
-
Zio, E.1
Baraldi, P.2
Gola, G.3
Roverso, D.4
Hoffmann, M.5
-
23
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Freund and R. Schapire, "A decision theoretic generalization of on-line learning and an application to boosting," Comput. Sys. Sci., vol. 57, no. 1, pp. 119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
24
-
-
14644422971
-
Combining pattern classifiers methods
-
NJ: Wiley
-
L. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms. Hoboken, NJ: Wiley, 2004.
-
(2004)
Algorithms. Hoboken
-
-
Kuncheva, L.1
-
25
-
-
0036472946
-
A theoretical study on six classifier fusion strategies
-
DOI 10.1109/34.982906
-
L. Kuncheva, "A theoretical study on six classifier fusion strategies," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 281-286, Feb. 2002. (Pubitemid 34198215)
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.2
, pp. 281-286
-
-
Kuncheva, L.I.1
-
26
-
-
35248840120
-
An ensemble approach for data fusion with
-
Berlin, Germany
-
M. Lewitt and R. Polikar, "An ensemble approach for data fusion with ," in Proc. 4th Int.WorkshopMultiple Classifier Syst. LNCS, Berlin, Germany, 2003, vol. 2709, pp. 176-186.
-
(2003)
Proc. 4th Int. WorkshopMultiple Classifier Syst. LNCS
, vol.2709
, pp. 176-186
-
-
Lewitt, M.1
Polikar, R.2
-
27
-
-
34047104426
-
An ensemble-based incremental learning approach to data fusion
-
DOI 10.1109/TSMCB.2006.883873, Special Issue on Robot Learning by Observation, Demonstration and Imitation
-
D. Parikh and R. Polikar, "An ensemble-based incremental learning approach to data fusion," IEEE Trans. Syst., Man, Cybern.-Part B: Cybern., vol. 37, no. 2, pp. 437-450, Apr. 2007. (Pubitemid 46523231)
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.37
, Issue.2
, pp. 437-450
-
-
Parikh, D.1
Polikar, R.2
-
28
-
-
33748611921
-
Ensemble based systems in decision making
-
Third Quarter
-
R. Polikar, "Ensemble based systems in decision making," IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quarter, 2006.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
29
-
-
84947790916
-
Classifier conditional posterior probabilities
-
Advances in Pattern Recognition
-
R. Duin and D. Tax, "Classifier conditional posterior probabilities," in Lecture Notes in Computer Science, LNCS. Berlin, Germany: Springer, 1998, vol. 1451, pp. 611-619. (Pubitemid 128117163)
-
(1998)
Lecture Notes in Computer Science
, Issue.1451
, pp. 611-619
-
-
Duin, R.P.W.1
Tax, D.M.J.2
-
31
-
-
33750682756
-
-
Springer-Verlag, LNCS
-
J. Byorick and R. Polikar, "Confidence estimation using the incremental learning algorithm, ," Springer-Verlag, LNCS, vol. 2714, pp. 181-188, 2003.
-
(2003)
Confidence Estimation Using the Incremental Learning Algorithm
, vol.2714
, pp. 181-188
-
-
Byorick, J.1
Polikar, R.2
-
32
-
-
26444558082
-
-
n.c. Berlin, Germany: Springer-Verlag MCS, LNCS
-
M. Muhlbaier, A. Topalis, and R. Polikar, Ensemble Confidence Estimates Posterior Probability, n.c. Berlin, Germany: Springer-Verlag , MCS, LNCS, 2005, vol. 3541, pp. 326-335.
-
(2005)
Ensemble Confidence Estimates Posterior Probability
, vol.3541
, pp. 326-335
-
-
Muhlbaier, M.1
Topalis, A.2
Polikar, R.3
-
33
-
-
79958280992
-
A method for estimating the confidence in the identification of nuclear transients by a bagged ensemble of fcm classifiers
-
Las Vegas, NV, Nov. 7-11
-
P. Baraldi, R. Razavi-Far, and E. Zio, "A method for estimating the confidence in the identification of nuclear transients by a bagged ensemble of fcm classifiers," in Proc. NPIC&HMIT, Las Vegas, NV, Nov. 7-11, 2010, pp. 283-293.
-
(2010)
Proc. NPIC&HMIT
, pp. 283-293
-
-
Baraldi, P.1
Razavi-Far, R.2
Zio, E.3
-
34
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
DOI 10.1109/5326.983933, PII S1094697701112617, Knowledge Management
-
R. Polikar, L. Udpa, S. Udpa, and V. Honavar, " : An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst., Man, Cybern.-C: Applicat. Rev., vol. 31, no. 4, pp. 497-508, 2001. (Pubitemid 34191829)
-
(2001)
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
Udpa, L.2
Udpa, S.S.3
Honavar, V.4
-
35
-
-
34548217482
-
-
Berlin/Heidelberg, Germany: Springer-Verlag , MCS, LNCS
-
M. Muhlbaier and R. Polikar, An Ensemble Approach for Incremental Learning in Nonstationary Environments. Berlin/Heidelberg, Germany: Springer-Verlag , MCS, LNCS, 2007, vol. 4472, pp. 490-500.
-
(2007)
An Ensemble Approach for Incremental Learning in Nonstationary Environments
, vol.4472
, pp. 490-500
-
-
Muhlbaier, M.1
Polikar, R.2
-
36
-
-
0001337304
-
Boosting and other ensemble methods
-
H. Drucker, C. Cortes, L. Jackel, Y. LeCun, and V. Vapnik, "Boosting and other ensemble methods," Neural Comput., vol. 6, no. 6, pp. 1289-1301, 1994.
-
(1994)
Neural Comput.
, vol.6
, Issue.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.3
Lecun, Y.4
Vapnik, V.5
-
37
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
38
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting and variants," Mach. Learn., vol. 36, pp. 105-139, 1999.
-
(1999)
Mach. Learn.
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
39
-
-
35048891979
-
Classifier ensembles for changing environments
-
Berlin/Heidelberg Germany: Springer
-
L. I. Kuncheva, Classifier ensembles for changing environments. Book Series Lecture Notes in Computer Science. Berlin/Heidelberg, Germany: Springer, 2004, vol. 3077, pp. 1-15.
-
(2004)
Book Series Lecture Notes in Computer Science
, vol.3077
, pp. 1-15
-
-
Kuncheva, L.I.1
-
41
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
R. Schapire, "The boosting approach to machine learning: An overview," Lecture Notes in Statistics, pp. 149-172, 2003.
-
(2003)
Lecture Notes in Statistics
, pp. 149-172
-
-
Schapire, R.1
-
43
-
-
0142063407
-
Novelty detection: A review-part 1: Statistical approaches
-
M. Markou and S. Singh, "Novelty detection: A review-part 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
44
-
-
0142126712
-
Novelty detection: A review-part 2: Neural network based approaches
-
M. Markou and S. Singh, "Novelty detection: A review-part 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
46
-
-
33746363218
-
Selecting features for nuclear transients classification by means of genetic algorithms
-
DOI 10.1109/TNS.2006.873868, 1645062
-
E. Zio, P. Baraldi, and N. Pedroni, "Selecting features for nuclear transients classification by means of genetic algorithms," IEEE Trans. Nucl. Sci., vol. 53, no. 3, pp. 1479-1493, Jun. 2006. (Pubitemid 44109455)
-
(2006)
IEEE Transactions on Nuclear Science
, vol.53
, Issue.3
, pp. 1479-1493
-
-
Zio, E.1
Baraldi, P.2
Pedroni, N.3
-
47
-
-
0032923221
-
Catastrophic forgetting in connectionist networks
-
DOI 10.1016/S1364-6613(99)01294-2, PII S1364661399012942
-
R. French, "Catastrophic forgetting in connectionist networks: causes, consequences and solutions," Trends in Cognitive Sci., vol. 3, no. 4, pp. 128-135, 1999. (Pubitemid 29155462)
-
(1999)
Trends in Cognitive Sciences
, vol.3
, Issue.4
, pp. 128-135
-
-
French, R.M.1
-
48
-
-
35048904511
-
-
Berlin/Heidelberg Germany: Springer-Verlag, MCS, LNCS
-
M. Muhlbaier, A. Topalis, and R. Polikar, Learn++.MT: A New Approach to Incremental Learning. Berlin/Heidelberg, Germany: Springer-Verlag, MCS, LNCS 2004, vol. 3077, pp. 52-61.
-
(2004)
Learn++.MT: A New Approach to Incremental Learning
, vol.3077
, pp. 52-61
-
-
Muhlbaier, M.1
Topalis, A.2
Polikar, R.3
|