메뉴 건너뛰기




Volumn 219, Issue 4, 2012, Pages 1420-1433

Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives

Author keywords

Carath odory's conditions; Fixed point theory; Fractional differential equation; Positive solutions; Singularly perturbed problems

Indexed keywords

EXISTENCE RESULTS; FIXED POINT THEORY; FRACTIONAL DIFFERENTIAL EQUATIONS; MULTIPLE POSITIVE SOLUTIONS; NON-LINEARITY; ODORY CONDITIONS; PERTURBED TERMS; POSITIVE SOLUTION; SIGN-CHANGING; SINGULAR POINTS; SINGULARLY PERTURBED PROBLEM;

EID: 84867579253     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.07.046     Document Type: Article
Times cited : (92)

References (26)
  • 2
    • 44949282247 scopus 로고
    • Damping description involving fractional operators
    • L. Gaul, P. Klein, and S. Kempffe Damping description involving fractional operators Mech. Sys. Signal Process 5 1991 81 88
    • (1991) Mech. Sys. Signal Process , vol.5 , pp. 81-88
    • Gaul, L.1    Klein, P.2    Kempffe, S.3
  • 3
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W.G. Glockle, and T.F. Nonnenmacher A fractional calculus approach of self-similar protein dynamics Biophys J. 68 1995 46 53
    • (1995) Biophys J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 4
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • C.A. Carpinteri, F. Mainardi, (Eds.) Springer, Wien
    • F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: C.A. Carpinteri, F. Mainardi, (Eds.), Fractal and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 291-348.
    • (1997) Fractal and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 5
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian, and T.F. Nonnenmache Relaxation in filled polymers: a fractional calculus approach J. Chem. Phys. 103 1995 7180 7186
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmache, T.F.4
  • 10
    • 58149326839 scopus 로고    scopus 로고
    • On the fractional m-point boundary value problem in reflexive Banach space and the weak toplogies
    • H.A.H. Salem On the fractional m-point boundary value problem in reflexive Banach space and the weak toplogies J. Comput. Appl. Math. 224 2009 565 572
    • (2009) J. Comput. Appl. Math. , vol.224 , pp. 565-572
    • Salem, H.A.H.1
  • 11
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1
  • 12
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C.S. Goodrich Existence of a positive solution to a class of fractional differential equations Appl. Math. Lett. 23 2010 1050 1055
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 13
    • 77953686973 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations
    • M. Rehman, and R. Khan Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations Appl. Math. Lett. 23 2010 1038 1044
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1038-1044
    • Rehman, M.1    Khan, R.2
  • 14
    • 84862776655 scopus 로고    scopus 로고
    • The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives
    • X. Zhang, L. Liu, and Y. Wu The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives Appl. Math. Comput. 218 2012 8526 8536
    • (2012) Appl. Math. Comput. , vol.218 , pp. 8526-8536
    • Zhang, X.1    Liu, L.2    Wu, Y.3
  • 15
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Z. Bai On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 2010 916 924
    • (2010) Nonlinear Anal. , vol.72 , pp. 916-924
    • Bai, Z.1
  • 16
    • 84863447182 scopus 로고    scopus 로고
    • Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    • B. Ahmad, and J.J. Nieto Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions Bound. Value Probl. 2011 2011:36
    • (2011) Bound. Value Probl. , pp. 201136
    • Ahmad, B.1    Nieto, J.J.2
  • 17
    • 79960994575 scopus 로고    scopus 로고
    • Existence of a positive solution to systems of differential equations of fractional order
    • C.S. Goodrich Existence of a positive solution to systems of differential equations of fractional order Comput. Math. Appl. 62 2011 1251 1268
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1251-1268
    • Goodrich, C.S.1
  • 18
    • 78651230726 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
    • C.S. Goodrich Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions Comput. Math. Appl. 61 2011 191 202
    • (2011) Comput. Math. Appl. , vol.61 , pp. 191-202
    • Goodrich, C.S.1
  • 19
    • 80053944527 scopus 로고    scopus 로고
    • Positive solutions to boundary value problems with nonlinear boundary conditions
    • C.S. Goodrich Positive solutions to boundary value problems with nonlinear boundary conditions Nonlinear Anal. 75 2012 417 432
    • (2012) Nonlinear Anal. , vol.75 , pp. 417-432
    • Goodrich, C.S.1
  • 20
    • 80955166213 scopus 로고    scopus 로고
    • Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations
    • X. Zhang, and Y. Han Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations Appl. Math. Lett. 25 2012 555 560
    • (2012) Appl. Math. Lett. , vol.25 , pp. 555-560
    • Zhang, X.1    Han, Y.2
  • 21
    • 77955203207 scopus 로고    scopus 로고
    • Multiple positive solutions for (n - 1, 1) -type semipositone conjugate boundary value problems of nonlinear fractional differential equations
    • C. Yuan Multiple positive solutions for (n - 1, 1) -type semipositone conjugate boundary value problems of nonlinear fractional differential equations Electron. J. Qual. Theory Differ. Equ. 36 2010 12
    • (2010) Electron. J. Qual. Theory Differ. Equ. , vol.36 , pp. 12
    • Yuan, C.1
  • 22
    • 84859711769 scopus 로고    scopus 로고
    • Global existence and non-existence for a higher-order parabolic equation with time-fractional term
    • F. Sun, and P. Shi Global existence and non-existence for a higher-order parabolic equation with time-fractional term Nonlinear Anal. 75 2012 4145 4155
    • (2012) Nonlinear Anal. , vol.75 , pp. 4145-4155
    • Sun, F.1    Shi, P.2
  • 23
    • 80054946851 scopus 로고    scopus 로고
    • A study of nonlinear Langevin equation involving two fractional orders in different intervals
    • B. Ahmad, J.J. Nieto, A. Alsaedi, and M. El-Shahed A study of nonlinear Langevin equation involving two fractional orders in different intervals Nonlinear Anal. Real World Appl. 13 2012 599 606
    • (2012) Nonlinear Anal. Real World Appl. , vol.13 , pp. 599-606
    • Ahmad, B.1    Nieto, J.J.2    Alsaedi, A.3    El-Shahed, M.4
  • 24
    • 84855198120 scopus 로고    scopus 로고
    • Multiple positive solutions of a singular fractional differential equation with negatively perturbed term
    • X. Zhang, L. Liu, and Y. Wu Multiple positive solutions of a singular fractional differential equation with negatively perturbed term Math. Math. Model. 55 2012 1263 1274
    • (2012) Math. Math. Model. , vol.55 , pp. 1263-1274
    • Zhang, X.1    Liu, L.2    Wu, Y.3
  • 25
    • 84862273389 scopus 로고    scopus 로고
    • Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives
    • doi:10.1155/2012/512127 Art. ID512127, 16 pages
    • X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives, Abstr. Appl. Anal. 2012, Art. ID512127, http://dx.doi.org/10.1155/ 2012/512127, 16 pages.
    • (2012) Abstr. Appl. Anal.
    • Zhang, X.1    Liu, L.2    Wiwatanapataphee, B.3    Wu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.