메뉴 건너뛰기




Volumn 25, Issue 3, 2012, Pages 555-560

Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations

Author keywords

Existence and uniqueness; Fractional differential equation; Monotone iterative technique; Positive solution

Indexed keywords

A-MONOTONE; APPLIED SCIENCE; EXISTENCE AND UNIQUENESS; FINANCIAL MATHEMATICS; FRACTIONAL DIFFERENTIAL EQUATIONS; HIGHER ORDER; INITIAL VALUES; ITERATIVE SEQUENCES; MONOTONE ITERATIVE TECHNIQUES; NONLOCAL; NONLOCAL TERM; POSITIVE SOLUTION;

EID: 80955166213     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2011.09.058     Document Type: Article
Times cited : (76)

References (17)
  • 1
    • 33846042078 scopus 로고    scopus 로고
    • Positive solutions of nonlocal boundary value problems: A unified approach
    • J. Webb, and G. Infante Positive solutions of nonlocal boundary value problems: a unified approach J. Lond. Math. Soc. 74 2006 673 693
    • (2006) J. Lond. Math. Soc. , vol.74 , pp. 673-693
    • Webb, J.1    Infante, G.2
  • 2
    • 33747373276 scopus 로고    scopus 로고
    • A necessary and sufficient condition for the existence of positive solutions of singular super-linear m-point boundary value problems
    • Z. Wei A necessary and sufficient condition for the existence of positive solutions of singular super-linear m-point boundary value problems Appl. Math. Comput. 179 2006 67 78
    • (2006) Appl. Math. Comput. , vol.179 , pp. 67-78
    • Wei, Z.1
  • 3
    • 33747034225 scopus 로고    scopus 로고
    • The method of lower and upper solutions for fourth order singular m-point boundary value problems
    • Z. Wei, and C. Pang The method of lower and upper solutions for fourth order singular m-point boundary value problems J. Math. Anal. Appl. 322 2006 675 692
    • (2006) J. Math. Anal. Appl. , vol.322 , pp. 675-692
    • Wei, Z.1    Pang, C.2
  • 4
    • 2942538625 scopus 로고    scopus 로고
    • A class of fourth order singular boundary value problems
    • Z. Wei A class of fourth order singular boundary value problems Appl. Math. Comput. 153 2004 865 884
    • (2004) Appl. Math. Comput. , vol.153 , pp. 865-884
    • Wei, Z.1
  • 5
    • 28444478348 scopus 로고    scopus 로고
    • Positive solutions of some singular m-point boundary value problems at nonresonance
    • Z. Wei Positive solutions of some singular m-point boundary value problems at nonresonance Appl. Math. Comput. 171 2005 433 449
    • (2005) Appl. Math. Comput. , vol.171 , pp. 433-449
    • Wei, Z.1
  • 6
    • 84867921261 scopus 로고    scopus 로고
    • A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems
    • Z. Hao, L. Liu, and L. Debnath A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems Appl. Math. Lett. 16 2003 279 285
    • (2003) Appl. Math. Lett. , vol.16 , pp. 279-285
    • Hao, Z.1    Liu, L.2    Debnath, L.3
  • 7
    • 40749107050 scopus 로고    scopus 로고
    • A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with p-Laplacian
    • X. Zhang, and L. Liu A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with p-Laplacian Nonlinear Anal. 68 2008 3127 3137
    • (2008) Nonlinear Anal. , vol.68 , pp. 3127-3137
    • Zhang, X.1    Liu, L.2
  • 8
    • 77955184607 scopus 로고    scopus 로고
    • On existence and uniqueness of positive solutions for integral boundary value problems
    • J. Mao, Z. Zhao, and N. Xu On existence and uniqueness of positive solutions for integral boundary value problems Electron. J. Qual. Theory Differ. Equ. 16 2010 1 8
    • (2010) Electron. J. Qual. Theory Differ. Equ. , Issue.16 , pp. 1-8
    • Mao, J.1    Zhao, Z.2    Xu, N.3
  • 9
    • 40849141315 scopus 로고    scopus 로고
    • Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems
    • X. Du, and Z. Zhao Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems Appl. Math. Comput. 198 2008 487 493
    • (2008) Appl. Math. Comput. , vol.198 , pp. 487-493
    • Du, X.1    Zhao, Z.2
  • 10
    • 67349103328 scopus 로고    scopus 로고
    • Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems
    • J. Webb, and M. Zima Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems Nonlinear Anal. 71 2009 1369 1378
    • (2009) Nonlinear Anal. , vol.71 , pp. 1369-1378
    • Webb, J.1    Zima, M.2
  • 11
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C.S. Goodrich Existence of a positive solution to a class of fractional differential equations Appl. Math. Lett. 23 2010 1050 1055
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 12
    • 79960994575 scopus 로고    scopus 로고
    • Existence of a positive solution to systems of differential equations of fractional order
    • C.S. Goodrich Existence of a positive solution to systems of differential equations of fractional order Comput. Math. Appl. 62 2011 1251 1268
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1251-1268
    • Goodrich, C.S.1
  • 13
    • 79955563070 scopus 로고    scopus 로고
    • Positive solutions for a nonlocal fractional differential equation
    • Y. Wang Positive solutions for a nonlocal fractional differential equation Nonlinear Anal. 74 2011 3599 3605
    • (2011) Nonlinear Anal. , vol.74 , pp. 3599-3605
    • Wang, Y.1
  • 14
    • 0003797958 scopus 로고    scopus 로고
    • Mathematics in Science and Engineering Academic Press New York, London, Toronto
    • I. Podlubny Fractional Differential Equations Mathematics in Science and Engineering 1999 Academic Press New York, London, Toronto
    • (1999) Fractional Differential Equations
    • Podlubny, I.1
  • 16
    • 77955203207 scopus 로고    scopus 로고
    • Multiple positive solutions for (n - 1, 1) -type semipositone conjugate boundary value problems of nonlinear fractional differential equations
    • 12 p.
    • C. Yuan Multiple positive solutions for (n - 1, 1) -type semipositone conjugate boundary value problems of nonlinear fractional differential equations Electron. J. Qual. Theory Differ. Equ. 36 2010 12 p.
    • (2010) Electron. J. Qual. Theory Differ. Equ. , Issue.36
    • Yuan, C.1
  • 17
    • 67349087696 scopus 로고    scopus 로고
    • Nonlocal conjugate type boundary value problems of higher order
    • J. Webb Nonlocal conjugate type boundary value problems of higher order Nonlinear Anal. 71 2009 1933 1940
    • (2009) Nonlinear Anal. , vol.71 , pp. 1933-1940
    • Webb, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.