메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 1251-1268

Existence of a positive solution to systems of differential equations of fractional order

Author keywords

Continuous fractional calculus; Fixed point theorem in cones; Green's function; Nonlinear system of boundary value problems; Right focal problem

Indexed keywords

CONTINUOUS FUNCTIONALS; EIGENVALUES; FIXED POINT THEOREM IN CONES; FRACTIONAL CALCULUS; FRACTIONAL ORDER; NON-LOCAL BOUNDARY CONDITIONS; NONLINEAR SYSTEM OF BOUNDARY VALUE PROBLEMS; NONLOCAL FUNCTIONALS; NUMERICAL EXAMPLE; POSITIVE SOLUTION; RIGHT-FOCAL PROBLEM; SYSTEMS OF DIFFERENTIAL EQUATIONS;

EID: 79960994575     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.02.039     Document Type: Article
Times cited : (114)

References (44)
  • 1
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C.S. Goodrich Existence of a positive solution to a class of fractional differential equations Appl. Math. Lett. 23 2010 1050 1055
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 2
    • 58049203758 scopus 로고    scopus 로고
    • Positive solutions for systems of generalized three-point nonlinear boundary value problems
    • J. Henderson Positive solutions for systems of generalized three-point nonlinear boundary value problems Comment. Math. Univ. Carolin. 49 2008 79 91
    • (2008) Comment. Math. Univ. Carolin. , vol.49 , pp. 79-91
    • Henderson, J.1
  • 3
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang Positive solutions to singular boundary value problem for nonlinear fractional differential equation Comput. Math. Appl. 59 2010 1300 1309
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1
  • 4
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problems for a coupled system of nonlinear fractional differential equations
    • X. Su Boundary value problems for a coupled system of nonlinear fractional differential equations Appl. Math. Lett. 22 2009 64 69
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 5
    • 70349490327 scopus 로고    scopus 로고
    • Calculus of variations with fractional derivatives and fractional integrals
    • R. Almeida, and D.F.M. Torres Calculus of variations with fractional derivatives and fractional integrals Appl. Math. Lett. 22 2009 1816 1820
    • (2009) Appl. Math. Lett. , vol.22 , pp. 1816-1820
    • Almeida, R.1    Torres, D.F.M.2
  • 6
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • A. Arara Fractional order differential equations on an unbounded domain Nonlinear Anal. 72 2010 580 586
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1
  • 7
    • 0038405057 scopus 로고    scopus 로고
    • Existence of positive solutions of nonlinear fractional differential equations
    • DOI 10.1016/S0022-247X(02)00716-3
    • A. Babakhani, and V. Daftardar-Gejji Existence of positive solutions of nonlinear fractional differential equations J. Math. Anal. Appl. 278 2003 434 442 (Pubitemid 36530147)
    • (2003) Journal of Mathematical Analysis and Applications , vol.278 , Issue.2 , pp. 434-442
    • Babakhani, A.1    Daftardar-Gejji, V.2
  • 8
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Z. Bai, and H. L Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505 (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 9
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of nonlocal fractional boundary value problem
    • Z. Bai On positive solutions of nonlocal fractional boundary value problem Nonlinear Anal. 72 2010 916 924
    • (2010) Nonlinear Anal. , vol.72 , pp. 916-924
    • Bai, Z.1
  • 10
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • M. Benchohra Existence results for fractional order functional differential equations with infinite delay J. Math. Anal. Appl. 338 2008 1340 1350
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1340-1350
    • Benchohra, M.1
  • 11
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, and S.K. Ntouyas Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. 71 2009 2391 2396
    • (2009) Nonlinear Anal. , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 12
    • 69549097929 scopus 로고    scopus 로고
    • Generalized monotone method for periodic boundary value problems of Caputo fractional differential equation
    • J.V. Devi Generalized monotone method for periodic boundary value problems of Caputo fractional differential equation Commun. Appl. Anal. 12 2008 399 406
    • (2008) Commun. Appl. Anal. , vol.12 , pp. 399-406
    • Devi, J.V.1
  • 13
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, and N. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.2
  • 14
    • 1942542248 scopus 로고    scopus 로고
    • Cauchy problem for fractional diffusion equations
    • DOI 10.1016/j.jde.2003.12.002
    • S. Eidelman, and A. Kochubei Cauchy problem for fractional diffusion equations J. Differential Equations 199 2004 211 255 (Pubitemid 38516155)
    • (2004) Journal of Differential Equations , vol.199 , Issue.2 , pp. 211-255
    • Eidelman, S.D.1    Kochubei, A.N.2
  • 15
    • 77950866104 scopus 로고    scopus 로고
    • Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
    • A. Malinowska, and D.F.M. Torres Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative Comput. Math. Appl. 59 2010 3110 3116
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3110-3116
    • Malinowska, A.1    Torres, D.F.M.2
  • 18
    • 67651094005 scopus 로고    scopus 로고
    • Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation
    • X. Xu, D. Jiang, and C. Yuan Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation Nonlinear Anal. 71 2009 4676 4688
    • (2009) Nonlinear Anal. , vol.71 , pp. 4676-4688
    • Xu, X.1    Jiang, D.2    Yuan, C.3
  • 19
    • 77949263126 scopus 로고    scopus 로고
    • Unbounded solutions for a fractional boundary value problem on the infinite interval
    • X. Zhao, and W. Ge Unbounded solutions for a fractional boundary value problem on the infinite interval Acta Appl. Math. 109 2010 495 505
    • (2010) Acta Appl. Math. , vol.109 , pp. 495-505
    • Zhao, X.1    Ge, W.2
  • 20
    • 67349177003 scopus 로고    scopus 로고
    • Existence and uniqueness for fractional neutral differential equations with infinite delay
    • Y. Zhou, F. Jiao, and J. Li Existence and uniqueness for fractional neutral differential equations with infinite delay Nonlinear Anal. 71 2009 3249 3256
    • (2009) Nonlinear Anal. , vol.71 , pp. 3249-3256
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 21
    • 67349086967 scopus 로고    scopus 로고
    • Existence and uniqueness for p-type fractional neutral differential equations
    • Y. Zhou, F. Jiao, and J. Li Existence and uniqueness for p-type fractional neutral differential equations Nonlinear Anal. 71 2009 2724 2733
    • (2009) Nonlinear Anal. , vol.71 , pp. 2724-2733
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 22
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • Y. Zhou, and F. Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. RWA 11 2010 4465 4475
    • (2010) Nonlinear Anal. RWA , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2
  • 23
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • J. Wang, and Y. Zhou A class of fractional evolution equations and optimal controls Nonlinear Anal. RWA 12 2011 262 272
    • (2011) Nonlinear Anal. RWA , vol.12 , pp. 262-272
    • Wang, J.1    Zhou, Y.2
  • 24
    • 35748962937 scopus 로고    scopus 로고
    • Fractional q-calculus on a time scale
    • F.M. Atici, and P.W. Eloe Fractional q-calculus on a time scale J. Nonlinear Math. Phys. 14 2007 333 344
    • (2007) J. Nonlinear Math. Phys. , vol.14 , pp. 333-344
    • Atici, F.M.1    Eloe, P.W.2
  • 25
    • 77950548183 scopus 로고    scopus 로고
    • A transform method in discrete fractional calculus
    • F.M. Atici, and P.W. Eloe A transform method in discrete fractional calculus Int. J. Difference Equ. 2 2007 165 176
    • (2007) Int. J. Difference Equ. , vol.2 , pp. 165-176
    • Atici, F.M.1    Eloe, P.W.2
  • 26
    • 74149083825 scopus 로고    scopus 로고
    • Initial value problems in discrete fractional calculus
    • F.M. Atici, and P.W. Eloe Initial value problems in discrete fractional calculus Proc. Amer. Math. Soc. 137 2009 981 989
    • (2009) Proc. Amer. Math. Soc. , vol.137 , pp. 981-989
    • Atici, F.M.1    Eloe, P.W.2
  • 27
    • 85085399420 scopus 로고    scopus 로고
    • Discrete fractional calculus with the nabla operator
    • (Spec. Ed. I)
    • F.M. Atici, and P.W. Eloe Discrete fractional calculus with the nabla operator Electron. J. Qual. Theory Differ. Equ. 3 2009 1 12 (Spec. Ed. I)
    • (2009) Electron. J. Qual. Theory Differ. Equ. , vol.3 , pp. 1-12
    • Atici, F.M.1    Eloe, P.W.2
  • 28
    • 79953286192 scopus 로고    scopus 로고
    • Two-point boundary value problems for finite fractional difference equations
    • doi:10.1080/10236190903029241
    • F.M. Atici, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl., in press (doi:10.1080/10236190903029241).
    • J. Difference Equ. Appl.
    • Atici, F.M.1    Eloe, P.W.2
  • 29
    • 77952557731 scopus 로고    scopus 로고
    • Modeling with fractional difference equations
    • F.M. Atici, and S. engl Modeling with fractional difference equations J. Math. Anal. Appl. 369 2010 1 9
    • (2010) J. Math. Anal. Appl. , vol.369 , pp. 1-9
    • Atici, F.M.1    Engl, S.2
  • 30
    • 77953136599 scopus 로고    scopus 로고
    • Continuity of solutions to discrete fractional initial value problems
    • C.S. Goodrich Continuity of solutions to discrete fractional initial value problems Comput. Math. Appl. 59 2010 3489 3499
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3489-3499
    • Goodrich, C.S.1
  • 31
    • 78650178926 scopus 로고    scopus 로고
    • Solutions to a discrete right-focal fractional boundary value problem
    • C.S. Goodrich Solutions to a discrete right-focal fractional boundary value problem Int. J. Difference Equ. 5 2010 195 216
    • (2010) Int. J. Difference Equ. , vol.5 , pp. 195-216
    • Goodrich, C.S.1
  • 32
    • 79951536621 scopus 로고    scopus 로고
    • Some new existence results for fractional difference equations
    • C.S. Goodrich Some new existence results for fractional difference equations Int. J. Dyn. Syst. Differ. Equ. 3 2011 145 162
    • (2011) Int. J. Dyn. Syst. Differ. Equ. , vol.3 , pp. 145-162
    • Goodrich, C.S.1
  • 33
    • 78651230726 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
    • C.S. Goodrich Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions Comput. Math. Appl. 61 2011 191 202
    • (2011) Comput. Math. Appl. , vol.61 , pp. 191-202
    • Goodrich, C.S.1
  • 34
    • 78650170131 scopus 로고    scopus 로고
    • Existence of a positive solution to a system of discrete fractional boundary value problems
    • C.S. Goodrich Existence of a positive solution to a system of discrete fractional boundary value problems Appl. Math. Comput. 217 2011 4740 4753
    • (2011) Appl. Math. Comput. , vol.217 , pp. 4740-4753
    • Goodrich, C.S.1
  • 35
    • 79960974606 scopus 로고    scopus 로고
    • A comparison result for the fractional difference operator
    • (in press)
    • C.S. Goodrich, A comparison result for the fractional difference operator, Int. J. Difference Equ., 6 (2011) (in press).
    • (2011) Int. J. Difference Equ. , vol.6
    • Goodrich, C.S.1
  • 36
    • 79953326334 scopus 로고    scopus 로고
    • On positive solutions to nonlocal fractional and integer-order difference equations
    • C.S. Goodrich On positive solutions to nonlocal fractional and integer-order difference equations Appl. Anal. Discrete Math. 5 2011 122 132
    • (2011) Appl. Anal. Discrete Math. , vol.5 , pp. 122-132
    • Goodrich, C.S.1
  • 37
    • 79953294826 scopus 로고    scopus 로고
    • On a discrete fractional three-point boundary value problem
    • doi:10.1080/10236198.2010.503240
    • C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl. doi:10.1080/10236198.2010.503240.
    • J. Difference Equ. Appl.
    • Goodrich, C.S.1
  • 39
    • 78049333168 scopus 로고    scopus 로고
    • Discrete-time fractional variational problems
    • N.R.O. Bastos Discrete-time fractional variational problems Signal Process. 91 2011 513 524
    • (2011) Signal Process. , vol.91 , pp. 513-524
    • Bastos, N.R.O.1
  • 40
    • 77953564728 scopus 로고    scopus 로고
    • Foundations of nabla fractional calculus on time scales and inequalities
    • G.A. Anastassiou Foundations of nabla fractional calculus on time scales and inequalities Comput. Math. Appl. 59 2010 3750 3762
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3750-3762
    • Anastassiou, G.A.1
  • 41
    • 77954861707 scopus 로고    scopus 로고
    • Principles of delta fractional calculus on time scales and inequalities
    • G.A. Anastassiou Principles of delta fractional calculus on time scales and inequalities Math. Comput. Modelling 52 2010 556 566
    • (2010) Math. Comput. Modelling , vol.52 , pp. 556-566
    • Anastassiou, G.A.1
  • 42
    • 84966234102 scopus 로고
    • On the existence of positive solutions of ordinary differential equations
    • L.H. Erbe, and H. Wang On the existence of positive solutions of ordinary differential equations Proc. Amer. Math. Soc. 120 1994 743 748
    • (1994) Proc. Amer. Math. Soc. , vol.120 , pp. 743-748
    • Erbe, L.H.1    Wang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.