메뉴 건너뛰기




Volumn , Issue , 2005, Pages 681-688

A model for handling approximate, noisy or incomplete labeling in text classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER NETWORKS; ERROR ANALYSIS; ITERATIVE METHODS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; SET THEORY;

EID: 31844433634     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1102351.1102437     Document Type: Conference Paper
Times cited : (17)

References (16)
  • 1
    • 0029587111 scopus 로고
    • Information geometry of the em and em algorithms for neural networks
    • Amari, S.-I. (1995). Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8, 1379-1408
    • (1995) Neural Networks , vol.8 , pp. 1379-1408
    • Amari, S.-I.1
  • 6
    • 31844451636 scopus 로고    scopus 로고
    • Exploiting weak prior knowledge in bayesian parameter estimation
    • Griffiths, T. L., & Tenenbaum, J. B. (2001). Exploiting weak prior knowledge in bayesian parameter estimation. Proceedings of NIPS.
    • (2001) Proceedings of NIPS
    • Griffiths, T.L.1    Tenenbaum, J.B.2
  • 8
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Chemnitz, DE: Springer Verlag, Heidelberg, DE
    • Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features, Proceedings of 10th European Conference on Machine Learning (pp. 137-142). Chemnitz, DE: Springer Verlag, Heidelberg, DE.
    • (1998) Proceedings of 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 9
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • Washington DC, US
    • Lee, W. S., & Liu, B. (2003). Learning with positive and unlabeled examples using weighted logistic regression. Proceedings of the 20th International Conference on Machine Learning (pp. 448-455). Washington DC, US.
    • (2003) Proceedings of the 20th International Conference on Machine Learning , pp. 448-455
    • Lee, W.S.1    Liu, B.2
  • 10
    • 0001409330 scopus 로고    scopus 로고
    • Naive (bayes) at forty. the independence assumption in information retrieval
    • Lewis, D. (1998). Naive (bayes) at forty. The independence assumption in information retrieval. Proceedings of 10th European Conference on Machine Learning (pp. 137-142).
    • (1998) Proceedings of 10th European Conference on Machine Learning , pp. 137-142
    • Lewis, D.1
  • 14
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning., 39, 103-134.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 16
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches .to text categorization
    • Yang, Y. (1999). An evaluation of statistical approaches .to text categorization. Information Retrieval, 1, 69-90.
    • (1999) Information Retrieval , vol.1 , pp. 69-90
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.