-
1
-
-
0029587111
-
Information geometry of the em and em algorithms for neural networks
-
Amari, S.-I. (1995). Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8, 1379-1408
-
(1995)
Neural Networks
, vol.8
, pp. 1379-1408
-
-
Amari, S.-I.1
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1976). Maximum likelihood from incomplete data via the EM algorithm. Proceedings of the Royal Statistical Society, 1-38.
-
(1976)
Proceedings of the Royal Statistical Society
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
31844451636
-
Exploiting weak prior knowledge in bayesian parameter estimation
-
Griffiths, T. L., & Tenenbaum, J. B. (2001). Exploiting weak prior knowledge in bayesian parameter estimation. Proceedings of NIPS.
-
(2001)
Proceedings of NIPS
-
-
Griffiths, T.L.1
Tenenbaum, J.B.2
-
8
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Chemnitz, DE: Springer Verlag, Heidelberg, DE
-
Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features, Proceedings of 10th European Conference on Machine Learning (pp. 137-142). Chemnitz, DE: Springer Verlag, Heidelberg, DE.
-
(1998)
Proceedings of 10th European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
9
-
-
1942516926
-
Learning with positive and unlabeled examples using weighted logistic regression
-
Washington DC, US
-
Lee, W. S., & Liu, B. (2003). Learning with positive and unlabeled examples using weighted logistic regression. Proceedings of the 20th International Conference on Machine Learning (pp. 448-455). Washington DC, US.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 448-455
-
-
Lee, W.S.1
Liu, B.2
-
10
-
-
0001409330
-
Naive (bayes) at forty. the independence assumption in information retrieval
-
Lewis, D. (1998). Naive (bayes) at forty. The independence assumption in information retrieval. Proceedings of 10th European Conference on Machine Learning (pp. 137-142).
-
(1998)
Proceedings of 10th European Conference on Machine Learning
, pp. 137-142
-
-
Lewis, D.1
-
13
-
-
0007771055
-
Using maximum entropy for text classification
-
Nigam, K., Lafferty, J., & McCallum, A. (1999). Using maximum entropy for text classification. Proceedings of Workshop on Machine Learning for Information Filtering, IJCAI, 61-67.
-
(1999)
Proceedings of Workshop on Machine Learning for Information Filtering, IJCAI
, pp. 61-67
-
-
Nigam, K.1
Lafferty, J.2
McCallum, A.3
-
14
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning., 39, 103-134.
-
(2000)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
16
-
-
27144441097
-
An evaluation of statistical approaches .to text categorization
-
Yang, Y. (1999). An evaluation of statistical approaches .to text categorization. Information Retrieval, 1, 69-90.
-
(1999)
Information Retrieval
, vol.1
, pp. 69-90
-
-
Yang, Y.1
|