-
1
-
-
32044456838
-
-
Taylor & Francis Group plc., London, UK
-
Abrahart R.J., Kneale P.E., See L.M. Neural Networks for Hydrological Modelling 2004, Taylor & Francis Group plc., London, UK.
-
(2004)
Neural Networks for Hydrological Modelling
-
-
Abrahart, R.J.1
Kneale, P.E.2
See, L.M.3
-
2
-
-
0034174396
-
Artificial neural networks in hydrology. II: Hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng ASCE 2005, 5(2):124-138.
-
(2005)
J. Hydrol. Eng ASCE
, vol.5
, Issue.2
, pp. 124-138
-
-
-
3
-
-
0019082388
-
Identification of nonlinear systems - a survey
-
Billings S.A. Identification of nonlinear systems - a survey. IEE Proc. 1980, 127(6):272-285.
-
(1980)
IEE Proc.
, vol.127
, Issue.6
, pp. 272-285
-
-
Billings, S.A.1
-
6
-
-
60549091177
-
Evolutionary artificial neural networks for hydrological systems forecasting
-
Chen Y.-H., Chang F.-J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137.
-
(2009)
J. Hydrol.
, vol.367
, pp. 125-137
-
-
Chen, Y.-H.1
Chang, F.-J.2
-
7
-
-
38349000857
-
Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques
-
Chokmani K., Ouarda T.B.M.J., Hamilton S., Ghedira M.H., Gingras H. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 2008, 349(3-4):383-396.
-
(2008)
J. Hydrol.
, vol.349
, Issue.3-4
, pp. 383-396
-
-
Chokmani, K.1
Ouarda, T.B.M.J.2
Hamilton, S.3
Ghedira, M.H.4
Gingras, H.5
-
8
-
-
78651378958
-
Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models
-
Chua L.H.C., Wong T.S.W. Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models. J. Hydrol. 2011, 397(3-4):191-201.
-
(2011)
J. Hydrol.
, vol.397
, Issue.3-4
, pp. 191-201
-
-
Chua, L.H.C.1
Wong, T.S.W.2
-
9
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2(4):303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
16
-
-
0013299836
-
A Genetic Adapted Neural Network Analysis of Performance of the Nutrient Removal Plant at Rotorua
-
The Sustainable City, Electrotechnical: Simulation and Control, Energy Management, Telecommunications. Wellington, NZ. The Institution of Professional Engineers, New Zealand
-
Hong, Y.S., Bhamidimarri, S.M.R., Charles, T., 1998. A Genetic Adapted Neural Network Analysis of Performance of the Nutrient Removal Plant at Rotorua. The Sustainable City, vol. 2, Electrotechnical: Simulation and Control, Energy Management, Telecommunications. Wellington, NZ. The Institution of Professional Engineers, New Zealand, pp. 213-217.
-
(1998)
, vol.2
, pp. 213-217
-
-
Hong, Y.S.1
Bhamidimarri, S.M.R.2
Charles, T.3
-
17
-
-
84866461926
-
Dynamic neuro-fuzzy local modeling system with a nonlinear feature extraction for the online adaptive warning system of river temperature affected by waste cooling water discharge
-
Hong Y.S., Bhamidimarri S.M.R. Dynamic neuro-fuzzy local modeling system with a nonlinear feature extraction for the online adaptive warning system of river temperature affected by waste cooling water discharge. Stoch. Environ. Res. Risk Assess. 2011, 10.1007/s00477-011-0543-z.
-
(2011)
Stoch. Environ. Res. Risk Assess.
-
-
Hong, Y.S.1
Bhamidimarri, S.M.R.2
-
18
-
-
57349188393
-
Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
-
Hong Y.-S.T., White P. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Adv. Water Resour. 2009, 32:110-119. 10.1016/j.advwatres.2008.10.006.
-
(2009)
Adv. Water Resour.
, vol.32
, pp. 110-119
-
-
Hong, Y.-S.T.1
White, P.2
-
19
-
-
0024880831
-
Multilayer feedforward neural networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward neural networks are universal approximators. Neural Networks 1989, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
20
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530. 10.1029/95WR01955.
-
(1995)
Water Resour. Res.
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.-L.1
Gupta, H.V.2
Sorooshian, S.3
-
21
-
-
0001332237
-
Stochastic Processes and Filtering Theory
-
Academic Press, New York, USA
-
Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Math Sci Eng. Academic Press, New York, USA.
-
(1970)
Math Sci Eng.
-
-
Jazwinski, A.H.1
-
22
-
-
0027601884
-
ANFIS:adaptive-network-based fuzzy inference systems
-
Jang J.-S.R. ANFIS:adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man & Cybernet. 1993, 23:665-685.
-
(1993)
IEEE Trans. Syst. Man & Cybernet.
, vol.23
, pp. 665-685
-
-
Jang, J.-S.R.1
-
23
-
-
0001553560
-
A function estimation approach to sequential learning with neural network
-
Kadirkamanathan V., Niranjan M. A function estimation approach to sequential learning with neural network. Neural Comput. 1993, 5:723-728.
-
(1993)
Neural Comput.
, vol.5
, pp. 723-728
-
-
Kadirkamanathan, V.1
Niranjan, M.2
-
24
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
Kalman R.E. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 1960, 82:35-45.
-
(1960)
Trans. ASME J. Basic Eng.
, vol.82
, pp. 35-45
-
-
Kalman, R.E.1
-
25
-
-
33748029144
-
Bayesian neural network for rainfall-runoff modeling
-
Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 10.1029/2005WR003971.
-
(2006)
Water Resour. Res.
-
-
Khan, M.S.1
Coulibaly, P.2
-
26
-
-
0031146959
-
Constructive algorithms for structure learning in feedforward neural networks for regression problems
-
Kwok T.Y., Yeung D.Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans. Neural Networks 1997, 8(3):630-645.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.3
, pp. 630-645
-
-
Kwok, T.Y.1
Yeung, D.Y.2
-
27
-
-
43949087486
-
Structural optimisation and input selection of an artificial neural network for river level prediction
-
Leahy P., Kiely G., Corcoran G. Structural optimisation and input selection of an artificial neural network for river level prediction. J. Hydrol. 2008, 355(20):192-201.
-
(2008)
J. Hydrol.
, vol.355
, Issue.20
, pp. 192-201
-
-
Leahy, P.1
Kiely, G.2
Corcoran, G.3
-
28
-
-
0028464415
-
A recursive multiple model approach to noise identification
-
Li X.R., Bar-Shalom Y. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst. 1994, 30(3):671-684.
-
(1994)
IEEE Trans. Aerosp. Electron. Syst.
, vol.30
, Issue.3
, pp. 671-684
-
-
Li, X.R.1
Bar-Shalom, Y.2
-
29
-
-
0004065145
-
Hyperparameters: Optimise or Integrate Out?
-
Kluwer Academic Publishers, G.R. Heidbreder (Ed.)
-
Mackay D.J.C. Hyperparameters: Optimise or Integrate Out?. Fundamental Theories of Physics 1996, 43-59. Kluwer Academic Publishers. G.R. Heidbreder (Ed.).
-
(1996)
Fundamental Theories of Physics
, pp. 43-59
-
-
Mackay, D.J.C.1
-
30
-
-
0015009019
-
On-line identification of linear dynamic systems with applications to Kalman filtering
-
Mehra R.K. On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans. Automatic Control 1971, AC-16(1):12-21.
-
(1971)
IEEE Trans. Automatic Control
, vol.AC 16
, Issue.1
, pp. 12-21
-
-
Mehra, R.K.1
-
31
-
-
0016990568
-
Adaptive sequential estimation of unknown noise statistics
-
Myers K.A., Tapley B.D. Adaptive sequential estimation of unknown noise statistics. IEEE Trans. Automatic Control 1976, AC-21:520-523.
-
(1976)
IEEE Trans. Automatic Control
, vol.AC 21
, pp. 520-523
-
-
Myers, K.A.1
Tapley, B.D.2
-
32
-
-
0001071040
-
Resource-allocating network for function interpolation
-
Platt J. Resource-allocating network for function interpolation. Neural Comput. 1991, 3:213-225.
-
(1991)
Neural Comput.
, vol.3
, pp. 213-225
-
-
Platt, J.1
-
33
-
-
0026408191
-
Decoupled extended Kalman filter training of feedforward layered networks
-
Puskorius, G.V., Feldkamp, L.A., 1991. Decoupled extended Kalman filter training of feedforward layered networks. In: International Joint Conference on Neural Networks, Seattle, pp. 307-312.
-
(1991)
International Joint Conference on Neural Networks, Seattle
, pp. 307-312
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
34
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
-
Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans. Neural Networks 1994, 5(2):279-297.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 279-297
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
35
-
-
26844549538
-
Parameter-based Kalman filter training: theory and implementation
-
John Wiley & Sons, S. Haykin (Ed.)
-
Puskorius G.V., Feldkamp L.A. Parameter-based Kalman filter training: theory and implementation. Kalman Filtering and Neural Networks 2001, 23-67. John Wiley & Sons. S. Haykin (Ed.).
-
(2001)
Kalman Filtering and Neural Networks
, pp. 23-67
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
36
-
-
0000971113
-
Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons
-
Ruck D.W., Rogers S.K., Kabrisky M., Maybeck P.S., Oxley M.E. Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14(6):686-690.
-
(1992)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.14
, Issue.6
, pp. 686-690
-
-
Ruck, D.W.1
Rogers, S.K.2
Kabrisky, M.3
Maybeck, P.S.4
Oxley, M.E.5
-
37
-
-
0026923239
-
Optimal filtering algorithms for fast learning in feedforward neural networks
-
Shah S., Palmieri F., Datum M. Optimal filtering algorithms for fast learning in feedforward neural networks. Neural Networks 1992, 5(5):779-787.
-
(1992)
Neural Networks
, vol.5
, Issue.5
, pp. 779-787
-
-
Shah, S.1
Palmieri, F.2
Datum, M.3
-
38
-
-
0033525269
-
Statistical mechanics of EKF learning in neural networks
-
Schottky B., Saad D. Statistical mechanics of EKF learning in neural networks. J. Phys. A 1999, 32(9):1605-1621.
-
(1999)
J. Phys. A
, vol.32
, Issue.9
, pp. 1605-1621
-
-
Schottky, B.1
Saad, D.2
-
39
-
-
0000221272
-
Training multilayer perceptrons with the extended Kalman algorithm
-
Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA
-
Singhal, S., Wu, L., 1989. Training multilayer perceptrons with the extended Kalman algorithm. In: Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, vol. 1. Morgan Kaufmann, San Mateo, CA, pp. 133-140.
-
(1989)
, vol.1
, pp. 133-140
-
-
Singhal, S.1
Wu, L.2
-
40
-
-
0026971570
-
Adapting bias by gradient descent: an incremental version of delta-bar-delta
-
MIT Press, San Jose, California
-
Sutton R.S. Adapting bias by gradient descent: an incremental version of delta-bar-delta. Proceedings of the Tenth National Conference on Artificial Intelligence 1992, 171-176. MIT Press, San Jose, California.
-
(1992)
Proceedings of the Tenth National Conference on Artificial Intelligence
, pp. 171-176
-
-
Sutton, R.S.1
-
41
-
-
0021892282
-
Fuzzy identification of systems and its applications to modeling and control
-
Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man & Cybernet. 1985, 15:116-132.
-
(1985)
IEEE Trans. Syst. Man & Cybernet.
, vol.15
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
44
-
-
0031568361
-
A sequential learning scheme for function approximation using minimal radial basis function neural networks
-
Yingwei L., Sundarajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997, 9:461-478.
-
(1997)
Neural Comput.
, vol.9
, pp. 461-478
-
-
Yingwei, L.1
Sundarajan, N.2
Saratchandran, P.3
-
45
-
-
0031891445
-
A sequential learning approach for single hidden layer neural networks
-
Zhang J., Morris A.J. A sequential learning approach for single hidden layer neural networks. Neural Networks 1998, 11(1):65-80.
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 65-80
-
-
Zhang, J.1
Morris, A.J.2
|