메뉴 건너뛰기




Volumn 468-469, Issue , 2012, Pages 11-21

Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling

Author keywords

Artificial neural network; Dynamic nonlinear state space model; Real time hydrological modeling; River temperature prediction; Sequential extended Kalman filtering (EKF) learning algorithm

Indexed keywords

ADAPTIVE NEURAL FUZZY INFERENCE SYSTEMS; COMPLEX DYNAMICS; EXTENDED KALMAN FILTERING; HYDROLOGICAL DATA; HYDROLOGICAL MODELING; MODEL PERFORMANCE; MULTI LAYER PERCEPTRON; NOISE COVARIANCE; NONLINEAR STATE SPACE MODELS; ONLINE SIMULATION; OPERATIONAL DATA; POWER STATION; REAL-TIME TASKS; RIVER TEMPERATURE; SEQUENTIAL LEARNING ALGORITHM; THERMAL POWER STATIONS;

EID: 84867099470     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2012.08.001     Document Type: Article
Times cited : (24)

References (45)
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng ASCE 2005, 5(2):124-138.
    • (2005) J. Hydrol. Eng ASCE , vol.5 , Issue.2 , pp. 124-138
  • 3
    • 0019082388 scopus 로고
    • Identification of nonlinear systems - a survey
    • Billings S.A. Identification of nonlinear systems - a survey. IEE Proc. 1980, 127(6):272-285.
    • (1980) IEE Proc. , vol.127 , Issue.6 , pp. 272-285
    • Billings, S.A.1
  • 6
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y.-H., Chang F.-J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137.
    • (2009) J. Hydrol. , vol.367 , pp. 125-137
    • Chen, Y.-H.1    Chang, F.-J.2
  • 7
    • 38349000857 scopus 로고    scopus 로고
    • Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques
    • Chokmani K., Ouarda T.B.M.J., Hamilton S., Ghedira M.H., Gingras H. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 2008, 349(3-4):383-396.
    • (2008) J. Hydrol. , vol.349 , Issue.3-4 , pp. 383-396
    • Chokmani, K.1    Ouarda, T.B.M.J.2    Hamilton, S.3    Ghedira, M.H.4    Gingras, H.5
  • 8
    • 78651378958 scopus 로고    scopus 로고
    • Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models
    • Chua L.H.C., Wong T.S.W. Runoff forecasting for an asphalt plane by artificial neural networks and comparisons with kinematic wave and autoregressive moving average models. J. Hydrol. 2011, 397(3-4):191-201.
    • (2011) J. Hydrol. , vol.397 , Issue.3-4 , pp. 191-201
    • Chua, L.H.C.1    Wong, T.S.W.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2(4):303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 16
    • 0013299836 scopus 로고    scopus 로고
    • A Genetic Adapted Neural Network Analysis of Performance of the Nutrient Removal Plant at Rotorua
    • The Sustainable City, Electrotechnical: Simulation and Control, Energy Management, Telecommunications. Wellington, NZ. The Institution of Professional Engineers, New Zealand
    • Hong, Y.S., Bhamidimarri, S.M.R., Charles, T., 1998. A Genetic Adapted Neural Network Analysis of Performance of the Nutrient Removal Plant at Rotorua. The Sustainable City, vol. 2, Electrotechnical: Simulation and Control, Energy Management, Telecommunications. Wellington, NZ. The Institution of Professional Engineers, New Zealand, pp. 213-217.
    • (1998) , vol.2 , pp. 213-217
    • Hong, Y.S.1    Bhamidimarri, S.M.R.2    Charles, T.3
  • 17
    • 84866461926 scopus 로고    scopus 로고
    • Dynamic neuro-fuzzy local modeling system with a nonlinear feature extraction for the online adaptive warning system of river temperature affected by waste cooling water discharge
    • Hong Y.S., Bhamidimarri S.M.R. Dynamic neuro-fuzzy local modeling system with a nonlinear feature extraction for the online adaptive warning system of river temperature affected by waste cooling water discharge. Stoch. Environ. Res. Risk Assess. 2011, 10.1007/s00477-011-0543-z.
    • (2011) Stoch. Environ. Res. Risk Assess.
    • Hong, Y.S.1    Bhamidimarri, S.M.R.2
  • 18
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong Y.-S.T., White P. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Adv. Water Resour. 2009, 32:110-119. 10.1016/j.advwatres.2008.10.006.
    • (2009) Adv. Water Resour. , vol.32 , pp. 110-119
    • Hong, Y.-S.T.1    White, P.2
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward neural networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward neural networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.-L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530. 10.1029/95WR01955.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 21
    • 0001332237 scopus 로고
    • Stochastic Processes and Filtering Theory
    • Academic Press, New York, USA
    • Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Math Sci Eng. Academic Press, New York, USA.
    • (1970) Math Sci Eng.
    • Jazwinski, A.H.1
  • 22
    • 0027601884 scopus 로고
    • ANFIS:adaptive-network-based fuzzy inference systems
    • Jang J.-S.R. ANFIS:adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man & Cybernet. 1993, 23:665-685.
    • (1993) IEEE Trans. Syst. Man & Cybernet. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 23
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural network
    • Kadirkamanathan V., Niranjan M. A function estimation approach to sequential learning with neural network. Neural Comput. 1993, 5:723-728.
    • (1993) Neural Comput. , vol.5 , pp. 723-728
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 24
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 1960, 82:35-45.
    • (1960) Trans. ASME J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 25
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 10.1029/2005WR003971.
    • (2006) Water Resour. Res.
    • Khan, M.S.1    Coulibaly, P.2
  • 26
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.Y., Yeung D.Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans. Neural Networks 1997, 8(3):630-645.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 27
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P., Kiely G., Corcoran G. Structural optimisation and input selection of an artificial neural network for river level prediction. J. Hydrol. 2008, 355(20):192-201.
    • (2008) J. Hydrol. , vol.355 , Issue.20 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 28
    • 0028464415 scopus 로고
    • A recursive multiple model approach to noise identification
    • Li X.R., Bar-Shalom Y. A recursive multiple model approach to noise identification. IEEE Trans. Aerosp. Electron. Syst. 1994, 30(3):671-684.
    • (1994) IEEE Trans. Aerosp. Electron. Syst. , vol.30 , Issue.3 , pp. 671-684
    • Li, X.R.1    Bar-Shalom, Y.2
  • 29
    • 0004065145 scopus 로고    scopus 로고
    • Hyperparameters: Optimise or Integrate Out?
    • Kluwer Academic Publishers, G.R. Heidbreder (Ed.)
    • Mackay D.J.C. Hyperparameters: Optimise or Integrate Out?. Fundamental Theories of Physics 1996, 43-59. Kluwer Academic Publishers. G.R. Heidbreder (Ed.).
    • (1996) Fundamental Theories of Physics , pp. 43-59
    • Mackay, D.J.C.1
  • 30
    • 0015009019 scopus 로고
    • On-line identification of linear dynamic systems with applications to Kalman filtering
    • Mehra R.K. On-line identification of linear dynamic systems with applications to Kalman filtering. IEEE Trans. Automatic Control 1971, AC-16(1):12-21.
    • (1971) IEEE Trans. Automatic Control , vol.AC 16 , Issue.1 , pp. 12-21
    • Mehra, R.K.1
  • 31
    • 0016990568 scopus 로고
    • Adaptive sequential estimation of unknown noise statistics
    • Myers K.A., Tapley B.D. Adaptive sequential estimation of unknown noise statistics. IEEE Trans. Automatic Control 1976, AC-21:520-523.
    • (1976) IEEE Trans. Automatic Control , vol.AC 21 , pp. 520-523
    • Myers, K.A.1    Tapley, B.D.2
  • 32
    • 0001071040 scopus 로고
    • Resource-allocating network for function interpolation
    • Platt J. Resource-allocating network for function interpolation. Neural Comput. 1991, 3:213-225.
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 34
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans. Neural Networks 1994, 5(2):279-297.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 35
    • 26844549538 scopus 로고    scopus 로고
    • Parameter-based Kalman filter training: theory and implementation
    • John Wiley & Sons, S. Haykin (Ed.)
    • Puskorius G.V., Feldkamp L.A. Parameter-based Kalman filter training: theory and implementation. Kalman Filtering and Neural Networks 2001, 23-67. John Wiley & Sons. S. Haykin (Ed.).
    • (2001) Kalman Filtering and Neural Networks , pp. 23-67
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 36
    • 0000971113 scopus 로고
    • Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons
    • Ruck D.W., Rogers S.K., Kabrisky M., Maybeck P.S., Oxley M.E. Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14(6):686-690.
    • (1992) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , Issue.6 , pp. 686-690
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Maybeck, P.S.4    Oxley, M.E.5
  • 37
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • Shah S., Palmieri F., Datum M. Optimal filtering algorithms for fast learning in feedforward neural networks. Neural Networks 1992, 5(5):779-787.
    • (1992) Neural Networks , vol.5 , Issue.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2    Datum, M.3
  • 38
    • 0033525269 scopus 로고    scopus 로고
    • Statistical mechanics of EKF learning in neural networks
    • Schottky B., Saad D. Statistical mechanics of EKF learning in neural networks. J. Phys. A 1999, 32(9):1605-1621.
    • (1999) J. Phys. A , vol.32 , Issue.9 , pp. 1605-1621
    • Schottky, B.1    Saad, D.2
  • 39
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with the extended Kalman algorithm
    • Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA
    • Singhal, S., Wu, L., 1989. Training multilayer perceptrons with the extended Kalman algorithm. In: Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, vol. 1. Morgan Kaufmann, San Mateo, CA, pp. 133-140.
    • (1989) , vol.1 , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 40
    • 0026971570 scopus 로고
    • Adapting bias by gradient descent: an incremental version of delta-bar-delta
    • MIT Press, San Jose, California
    • Sutton R.S. Adapting bias by gradient descent: an incremental version of delta-bar-delta. Proceedings of the Tenth National Conference on Artificial Intelligence 1992, 171-176. MIT Press, San Jose, California.
    • (1992) Proceedings of the Tenth National Conference on Artificial Intelligence , pp. 171-176
    • Sutton, R.S.1
  • 41
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man & Cybernet. 1985, 15:116-132.
    • (1985) IEEE Trans. Syst. Man & Cybernet. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 44
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundarajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997, 9:461-478.
    • (1997) Neural Comput. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundarajan, N.2    Saratchandran, P.3
  • 45
    • 0031891445 scopus 로고    scopus 로고
    • A sequential learning approach for single hidden layer neural networks
    • Zhang J., Morris A.J. A sequential learning approach for single hidden layer neural networks. Neural Networks 1998, 11(1):65-80.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 65-80
    • Zhang, J.1    Morris, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.