-
1
-
-
0036475447
-
A tutorial on particle filters for on-line non-linear/nongaussian Bayesian tracking
-
S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/nongaussian Bayesian tracking. IEEE Trans. Signal Processing, 50 (2):174-189, 2002.
-
(2002)
IEEE Trans. Signal Processing
, vol.50
, Issue.2
, pp. 174-189
-
-
Arulampalam, S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
2
-
-
3042733565
-
Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems
-
W. Chen, B.R. Bakshi, P K. Goel, and S. Ungarala. Bayesian estimation via sequential Monte Carlo sampling: unconstrained nonlinear dynamic systems. Ind. Eng. Chem. Res., 43 (14):4012-4025, 2004.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, Issue.14
, pp. 4012-4025
-
-
Chen, W.1
Bakshi, B.R.2
Goel, P.K.3
Ungarala, S.4
-
3
-
-
23844456306
-
Nonlinear filters: Beyond the Kalman filter
-
F. Daum. Nonlinear filters: beyond the Kalman filter. IEEE A&E Systems Magazine, 20:57-69, 2005.
-
(2005)
IEEE A&E Systems Magazine
, vol.20
, pp. 57-69
-
-
Daum, F.1
-
5
-
-
0027580559
-
Novel approach to nonlinear and non-gaussian Bayesian state estimation
-
N. Gordon, D. Salmond, and A F M. Smith. Novel approach to nonlinear and non-gaussian Bayesian state estimation. Proc. Inst. Elect. Eng., 40:107-113, 1993.
-
(1993)
Proc. Inst. Elect. Eng.
, vol.40
, pp. 107-113
-
-
Gordon, N.1
Salmond, D.2
Smith, A.F.M.3
-
6
-
-
51349105981
-
Estimation of states of nonlinear systems using a particle filter
-
S A. Imtiaz, K.Roy, B.Huang, S L. Shah, and P. Jampana. Estimation of states of nonlinear systems using a particle filter. IEEE Intl. Conf. on Industrial Technology, 1: 2432-2437, 2006.
-
(2006)
IEEE Intl. Conf. on Industrial Technology
, vol.1
, pp. 2432-2437
-
-
Imtiaz, S.A.1
Roy, K.2
Huang, B.3
Shah, S.L.4
Jampana, P.5
-
8
-
-
78751585815
-
Constrained state estimation using particle filter
-
Seoul, Korea
-
J.Prakash, S. Patwardhan, and S.L. Shah. Constrained state estimation using particle filter. In Proc. of IFAC WC, Seoul, Korea, 2008.
-
(2008)
Proc. of IFAC WC
-
-
Prakash, J.1
Patwardhan, S.2
Shah, S.L.3
-
9
-
-
0031347068
-
A new extension of the Kalman filter to nonlinearsystems
-
S J. Julier and J K. Uhlmann. A new extension of the Kalman filter to nonlinearsystems. In Proc. SPIE, 3068: 182-193, 1997.
-
(1997)
Proc. SPIE
, vol.3068
, pp. 182-193
-
-
Julier, S.J.1
Uhlmann, J.K.2
-
10
-
-
44649122952
-
Applying the unscented Kalman filter for nonlinear state estimation
-
R. Kandepu, B. Foss, and L. Imsland. Applying the unscented Kalman filter for nonlinear state estimation. Journal of Process Control, 18:753-768, 2008.
-
(2008)
Journal of Process Control
, vol.18
, pp. 753-768
-
-
Kandepu, R.1
Foss, B.2
Imsland, L.3
-
12
-
-
0027391354
-
Nonlinear product property control in industrial gas-phase polyethylene reactors
-
K B. McAuley and J F. MacGregor. Nonlinear product property control in industrial gas-phase polyethylene reactors. AIChE Journal, 39(5):855-866, 1993.
-
(1993)
AIChE Journal
, vol.39
, Issue.5
, pp. 855-866
-
-
McAuley, K.B.1
MacGregor, J.F.2
-
13
-
-
0025448958
-
A kinetic model for industrial gas-phase ethylene copolymerization
-
K B. McAuley, J F. MacGregor, and A E. Hamielec. A kinetic model for industrial gas-phase ethylene copolymerization. AIChE Journal, 36(6):837-850, 1990.
-
(1990)
AIChE Journal
, vol.36
, Issue.6
, pp. 837-850
-
-
McAuley, K.B.1
MacGregor, J.F.2
Hamielec, A.E.3
-
14
-
-
76749097180
-
Likelihood function modeling of particle filter in presence of non-stationary non-gaussian measurement noise
-
A. Mukherjee and A. Sengupta. Likelihood function modeling of particle filter in presence of non-stationary non-gaussian measurement noise. Signal Processing, 90: 1873-1885, 2010.
-
(2010)
Signal Processing
, vol.90
, pp. 1873-1885
-
-
Mukherjee, A.1
Sengupta, A.2
-
15
-
-
51349127281
-
Spacecraft autonomous navigation using unscented particle filter-based celestial/doppler information fusion
-
X. Ning and J. Fang. Spacecraft autonomous navigation using unscented particle filter-based celestial/doppler information fusion. Measurement Science and Technology, 19(9):1 - 8, 2008.
-
(2008)
Measurement Science and Technology
, vol.19
, Issue.9
, pp. 1-8
-
-
Ning, X.1
Fang, J.2
-
16
-
-
33747883188
-
Particle filtering and moving horizon estimation
-
J B. Rawlings and B R. Bakshi. Particle filtering and moving horizon estimation. Comp. Chem. Eng., 30:1529-1541, 2006.
-
(2006)
Comp. Chem. Eng.
, vol.30
, pp. 1529-1541
-
-
Rawlings, J.B.1
Bakshi, B.R.2
-
17
-
-
0742304282
-
The unscented filter as an alternative to the EKF for nonlinear state estimation: A simulation case study
-
A. Romanenko and J A A M. Castro. The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study. Comp. Chem. Eng., 28(3):347-355, 2004.
-
(2004)
Comp. Chem. Eng.
, vol.28
, Issue.3
, pp. 347-355
-
-
Romanenko, A.1
Castro, J.A.A.M.2
-
18
-
-
0035691549
-
Better proposal distributions: Object tracking using unscented particle filter
-
Kauai, Hawaii
-
Y. Rui and Y. Chen. Better proposal distributions: Object tracking using unscented particle filter. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (volume 2), Kauai, Hawaii, 2001.
-
(2001)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, Issue.2
-
-
Rui, Y.1
Chen, Y.2
-
20
-
-
84962432583
-
The unscented Kalman filter for nonlinear estimation
-
Lake Louise, Alberta, Canada
-
E A. Wan and R. van der Merwe. The unscented Kalman filter for nonlinear estimation. Proc. of IEEE Symp. (AS-SPCC), Lake Louise, Alberta, Canada, pages 153- 158, 2000.
-
(2000)
Proc. of IEEE Symp. (AS-SPCC)
, pp. 153-158
-
-
Wan, E.A.1
Merwe Der R.Van2
|