메뉴 건너뛰기




Volumn 23, Issue 4, 2010, Pages 316-322

A sliding windows based dual support framework for discovering emerging trends from temporal data

Author keywords

Association rule mining; Jumping emerging patterns; Sliding window; Temporal trends; Time series

Indexed keywords

APRIORI; ASSOCIATION RULE MINING; COMPUTATIONAL COSTS; DATA SETS; EMERGING PATTERNS; EMERGING TRENDS; EXPERIMENTAL SECTION; ITEM SETS; ITEMSET; JUMPING EMERGING PATTERN; LARGE DATASETS; NOVEL TECHNIQUES; SEARCH SPACES; SLIDING WINDOW; SLIDING WINDOW TECHNIQUES; TEMPORAL DATA; TEMPORAL TRENDS; TIME-SERIES DATA; TIME-STAMPED DATA; TREND ANALYSIS;

EID: 77950857411     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2009.11.005     Document Type: Article
Times cited : (20)

References (21)
  • 2
    • 56349132360 scopus 로고    scopus 로고
    • Mining frequent itemsets over data streams using efficient window sliding techniques
    • Li H.F., and Lee S.Y. Mining frequent itemsets over data streams using efficient window sliding techniques. Expert Systems with Applications 36 2P1 (2009) 1466-1477
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 PART 1 , pp. 1466-1477
    • Li, H.F.1    Lee, S.Y.2
  • 3
    • 0042850501 scopus 로고    scopus 로고
    • Progressive partition miner: an efficient algorithm for mining general temporal association rules
    • Lee C.H., Chen M.S., and Linm C.R. Progressive partition miner: an efficient algorithm for mining general temporal association rules. IEEE Transactions on Knowledge and Data Engineering (2003) 1004-1017
    • (2003) IEEE Transactions on Knowledge and Data Engineering , pp. 1004-1017
    • Lee, C.H.1    Chen, M.S.2    Linm, C.R.3
  • 4
    • 3142639461 scopus 로고    scopus 로고
    • A sliding window method for finding recently frequent itemsets over online data streams
    • Chang J.H., and Lee W.S. A sliding window method for finding recently frequent itemsets over online data streams. Journal of Information Science and Engineering 20 4 (2004) 753-762
    • (2004) Journal of Information Science and Engineering , vol.20 , Issue.4 , pp. 753-762
    • Chang, J.H.1    Lee, W.S.2
  • 5
    • 33644920942 scopus 로고    scopus 로고
    • Research issues in data stream association rule mining
    • Jiang N. Research issues in data stream association rule mining. ACM SIGMOD Record 35 1 (2006) 14-19
    • (2006) ACM SIGMOD Record , vol.35 , Issue.1 , pp. 14-19
    • Jiang, N.1
  • 12
    • 77950864513 scopus 로고    scopus 로고
    • M. Sulaiman Khan, M. Muyeba, C. Tjortjis, F. Coenen, An effective fuzzy healthy association rule mining algorithm (FHARM), in: Proceedings of the 7th Annual Workshop on Computational Intelligence, UKCI 2007, 2007.
    • M. Sulaiman Khan, M. Muyeba, C. Tjortjis, F. Coenen, An effective fuzzy healthy association rule mining algorithm (FHARM), in: Proceedings of the 7th Annual Workshop on Computational Intelligence, UKCI 2007, 2007.
  • 13
    • 77950858388 scopus 로고    scopus 로고
    • IBM Synthetic Data Generator TDK
    • IBM Synthetic Data Generator (TDK), .
  • 14
  • 15
    • 77950864667 scopus 로고    scopus 로고
    • Point of Sale (POS) Data is Provided by a News Agent/Grocery Store in Walsall
    • Point of Sale (POS) Data is Provided by a News Agent/Grocery Store in Walsall.
  • 16
    • 77950862169 scopus 로고    scopus 로고
    • Freight Forwarding Enterprise Data is Provided by
    • Freight Forwarding Enterprise Data is Provided by Transglobal (TG) Express Service: .
    • Express Service
    • Transglobal, T.G.1
  • 17
  • 19
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • Bayardo Jr. R.J. Efficiently mining long patterns from databases. ACM SIGMOD Record 27 2 (1998) 85-93
    • (1998) ACM SIGMOD Record , vol.27 , Issue.2 , pp. 85-93
    • Bayardo Jr., R.J.1
  • 20
    • 0041562664 scopus 로고    scopus 로고
    • Programmable stream processors
    • Kapasi U.J., et al. Programmable stream processors. Computer (2003) 54-62
    • (2003) Computer , pp. 54-62
    • Kapasi, U.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.