메뉴 건너뛰기




Volumn 24, Issue 21, 2008, Pages 2467-2473

An unsupervised conditional random fields approach for clustering gene expression time series

Author keywords

[No Author keywords available]

Indexed keywords

GALACTOSE;

EID: 54949112147     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn375     Document Type: Article
Times cited : (19)

References (24)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner,M. et al. (2000) Gene ontology: Tool for the unification of biology. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 3
    • 23844434593 scopus 로고    scopus 로고
    • Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data
    • Boutros,P.C. and Okey,A.B. (2005) Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform., 6, 331-343.
    • (2005) Brief. Bioinform , vol.6 , pp. 331-343
    • Boutros, P.C.1    Okey, A.B.2
  • 4
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho,R.J. et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2, 65-73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 6
    • 33746353952 scopus 로고    scopus 로고
    • Applying dynamic Bayesian networks to perturbed gene expression data
    • Dojer, N. et al. (2006) Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 7.
    • (2006) BMC Bioinformatics , vol.7
    • Dojer, N.1
  • 7
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst,J. et al. (2005) Clustering short time series gene expression data. Bioinformatics, 21(Suppl. 1).
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ernst, J.1
  • 9
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley,C. and Raftery,A. (2002) Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc., 97, 611-631.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 11
    • 33645507298 scopus 로고    scopus 로고
    • A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of bayesian hierarchical clustering of curves
    • Heard,N.A. et al. (2006) A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of bayesian hierarchical clustering of curves. J. Am. Stat. Assoc. 101, 18-29.
    • (2006) J. Am. Stat. Assoc , vol.101 , pp. 18-29
    • Heard, N.A.1
  • 12
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classif., 2, 193-218.
    • (1985) J. Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 13
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 14
    • 0035805255 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
    • Ideker,T. et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292 929-934.
    • (2001) Science , vol.292 , pp. 929-934
    • Ideker, T.1
  • 15
    • 0038066608 scopus 로고    scopus 로고
    • Mining gene expression data using a novel approach based on hidden markov models
    • Ji,X. et al. (2003) Mining gene expression data using a novel approach based on hidden markov models. FEBS Lett., 542, 125-131.
    • (2003) FEBS Lett , vol.542 , pp. 125-131
    • Ji, X.1
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, pp
    • Lafferty,J.D. et al. (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 282-289.
    • (2001) Proceedings of the Eighteenth International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.D.1
  • 17
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan,Y. and Li,H. (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 18
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma,P. et al. (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Res., 34, 1261-1269.
    • (2006) Nucleic Acids Res , vol.34 , pp. 1261-1269
    • Ma, P.1
  • 19
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • Medvedovic,M. et al. (2004) Bayesian mixture model based clustering of replicated microarray data. Bioinformatics, 20 1222-1232.
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1
  • 20
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • Ng,S.K. et al. (2006) A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics, 22, 1745-1752.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.K.1
  • 22
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim,D.K. (2002) From patterns to pathways: Gene expression data analysis comes of age. Nat. Genet., 32 (Suppl), 502-508.
    • (2002) Nat. Genet , vol.32 , Issue.SUPPL. , pp. 502-508
    • Slonim, D.K.1
  • 23
    • 32144435583 scopus 로고    scopus 로고
    • An approach for clustering gene expression data with error information
    • Tjaden,B. (2006) An approach for clustering gene expression data with error information. BMC Bioinformatics, 7, 17.
    • (2006) BMC Bioinformatics , vol.7 , pp. 17
    • Tjaden, B.1
  • 24
    • 22544444517 scopus 로고    scopus 로고
    • Dynamic model-based clustering for time-course gene expression data
    • Wu,F.X. et al. (2005) Dynamic model-based clustering for time-course gene expression data. J. Bioinform. Comput. Biol., 3, 821-836.
    • (2005) J. Bioinform. Comput. Biol , vol.3 , pp. 821-836
    • Wu, F.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.