메뉴 건너뛰기




Volumn 20, Issue SUPPL. 2, 2012, Pages 51-71

Combining adaboost with preprocessing algorithms for extracting fuzzy rules from low quality data in possibly imbalanced problems

Author keywords

boosting; Genetic fuzzy systems; imbalanced classification; low quality data

Indexed keywords

ADAPTIVE BOOSTING; FUZZY INFERENCE;

EID: 84866353181     PISSN: 02184885     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218488512400156     Document Type: Article
Times cited : (4)

References (24)
  • 6
    • 78651349058 scopus 로고    scopus 로고
    • Mark-recapture techniques in statistical tests for imprecise data
    • I. Couso and L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approximate Reasoning 52(2) (2011) 240-260.
    • (2011) Int. J. Approximate Reasoning , vol.52 , Issue.2 , pp. 240-260
    • Couso, I.1    Sánchez, L.2
  • 7
    • 46849096083 scopus 로고    scopus 로고
    • A study behaviour of linguistic fuzzy rule based classification system in the framework of imbalanced data-sets
    • A. Fernández, S. Garcia, M. J. del Jesús and F. Herrera, A study behaviour of linguistic fuzzy rule based classification system in the framework of imbalanced data-sets, Fuzzy Sets and Systems 159 (2008) 2378-2398.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2378-2398
    • Fernández, A.1    Garcia, S.2    Del Jesús, M.J.3    Herrera, F.4
  • 8
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • P. Hart, The condensed nearest neighbor rule, IEEE Trans. Inform. Theory 14 (1968) 515-516.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 515-516
    • Hart, P.1
  • 9
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy, current research trends and prospects
    • F. Herrera, Genetic fuzzy systems: taxonomy, current research trends and prospects, Evolutionary Intelligence 1 (2008) 27-46.
    • (2008) Evolutionary Intelligence , vol.1 , pp. 27-46
    • Herrera, F.1
  • 10
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • H. Ishibuchi, T. Nakashima and T. Morisawa, Voting in fuzzy rule-based systems for pattern classification problems, Fuzzy Sets and Systems 103(2) (1999) 223-239.
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-239
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 11
    • 0001378385 scopus 로고    scopus 로고
    • An asymptotic a-test for the expectation of random fuzzy variables
    • R. Körner, An asymptotic a-test for the expectation of random fuzzy variables, J. Statistical Planning and Inference 83 (2000) 331-346.
    • (2000) J. Statistical Planning and Inference , vol.83 , pp. 331-346
    • Körner, R.1
  • 12
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, Int. Conf. Machine Learning, 1997, pp. 170-186.
    • (1997) Int. Conf. Machine Learning , pp. 170-186
    • Kubat, M.1    Matwin, S.2
  • 16
    • 78650820723 scopus 로고    scopus 로고
    • Diagnosis of dyslexia with low quality data with genetic fuzzy systems
    • A. Palacios, L. Sánchez and I. Couso, Diagnosis of dyslexia with low quality data with genetic fuzzy systems, Int. J. Approximate Reasoning 51 (2010) 993-1009.
    • (2010) Int. J. Approximate Reasoning , vol.51 , pp. 993-1009
    • Palacios, A.1    Sánchez, L.2    Couso, I.3
  • 17
    • 79955570365 scopus 로고    scopus 로고
    • Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data
    • A. Palacios, L. Sánchez and I. Couso, Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data, Int. J. Approximate Reasoning 52 (2011) 841-862.
    • (2011) Int. J. Approximate Reasoning , vol.52 , pp. 841-862
    • Palacios, A.1    Sánchez, L.2    Couso, I.3
  • 20
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, Machine Learning 37(3) (1999) 297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 21
    • 84957085334 scopus 로고    scopus 로고
    • Theoretical views of boosting and applications
    • R. E. Schapire, Theoretical Views of Boosting and Applications, Lecture Notes in Artificial Intelligence, Vol. 1720, 1999, pp. 13-25.
    • (1999) Lecture Notes in Artificial Intelligence , vol.1720 , pp. 13-25
    • Schapire, R.E.1
  • 22
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M. Kamel, A. Wong and Y. Wang, Cost-sensitive boosting for classification of imbalanced data, Pattern Recognition 40 (2007) 3358-3378.
    • (2007) Pattern Recognition , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.2    Wong, A.3    Wang, Y.4
  • 23
  • 24
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbour rules using edited data
    • D. R. Wilson, Asymptotic properties of nearest neighbour rules using edited data, IEEE Trans. Syst. Man Comm. 2(3) (1972) 408-421.
    • (1972) IEEE Trans. Syst. Man Comm. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.