메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages

Regularized estimation of large-scale gene association networks using graphical Gaussian models

Author keywords

[No Author keywords available]

Indexed keywords

FALSE DISCOVERY RATE; GRAPHICAL GAUSSIAN MODELS; HIGH-DIMENSIONAL REGRESSIONS; PARTIAL CORRELATION; PARTIAL LEAST SQUARE (PLS); REGULARIZATION PARAMETERS; REGULARIZATION TECHNIQUE; SAMPLE COVARIANCE MATRIX;

EID: 73149097219     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-384     Document Type: Article
Times cited : (194)

References (56)
  • 1
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks using Probabilistic Graphical Models
    • 10.1126/science.1094068, 14764868
    • Friedman N. Inferring Cellular Networks using Probabilistic Graphical Models. Science 2004, 303(5659):799-805. 10.1126/science.1094068, 14764868.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 2
    • 0037197936 scopus 로고    scopus 로고
    • Reverse Engineering Gene Networks using Singular Value Decomposition and Robust Regression
    • Yeung MKS, Tegnér J, Collins JJ. Reverse Engineering Gene Networks using Singular Value Decomposition and Robust Regression. Proceedings of the National Academy of Sciences 2002, 99(9):6163-6168.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.S.1    Tegnér, J.2    Collins, J.J.3
  • 3
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell Activation using Gene Expression Profiling and State-Space Models
    • 10.1093/bioinformatics/bth093, 14962938
    • Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D, Falciani F. Modeling T-cell Activation using Gene Expression Profiling and State-Space Models. Bioinformatics 2004, 20:1361-1372. 10.1093/bioinformatics/bth093, 14962938.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3    Lioumi, M.4    Sotheran, E.5    Gaiba, A.6    Wild, D.7    Falciani, F.8
  • 6
    • 27844521293 scopus 로고    scopus 로고
    • A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics
    • Schäfer J, Strimmer K. A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology 2005, 4:32.
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.4 , pp. 32
    • Schäfer, J.1    Strimmer, K.2
  • 7
    • 15944364151 scopus 로고    scopus 로고
    • An Empirical Bayes Approach to Inferring Large-Scale Gene Association Networks
    • 10.1093/bioinformatics/bti062, 15479708
    • Schäfer J, Strimmer K. An Empirical Bayes Approach to Inferring Large-Scale Gene Association Networks. Bioinformatics 2005, 21:754-764. 10.1093/bioinformatics/bti062, 15479708.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 8
    • 33645568358 scopus 로고    scopus 로고
    • Gradient Directed Regularization for Sparse Gaussian Concentration Graphs, with Applications to Inference of Genetic Networks
    • Li H, Gui J. Gradient Directed Regularization for Sparse Gaussian Concentration Graphs, with Applications to Inference of Genetic Networks. Biostatistics 2008, 7(2):302-317.
    • (2008) Biostatistics , vol.7 , Issue.2 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 9
    • 33947115409 scopus 로고    scopus 로고
    • Model Selection and Estimation in the Gaussian Graphical Model
    • Yuan M, Lin Y. Model Selection and Estimation in the Gaussian Graphical Model. Biometrika 2007, 94:19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 10
    • 39149092734 scopus 로고    scopus 로고
    • Reconstruction of Genetic Association Networks from Microarray Data
    • 10.1093/bioinformatics/btm640, 18204062
    • Pihur V, Datta S, Datta S. Reconstruction of Genetic Association Networks from Microarray Data. Bioinformatics 2008, 24(4):561-568. 10.1093/bioinformatics/btm640, 18204062.
    • (2008) Bioinformatics , vol.24 , Issue.4 , pp. 561-568
    • Pihur, V.1    Datta, S.2    Datta, S.3
  • 11
    • 35948931439 scopus 로고    scopus 로고
    • An Arabidopsis Gene Network Based on the Graphical Gaussian Model
    • 10.1101/gr.6911207, 2045144, 17921353
    • Ma S, Gong Q, Bohnert HJ. An Arabidopsis Gene Network Based on the Graphical Gaussian Model. Genome Research 2007, 17:1614-1625. 10.1101/gr.6911207, 2045144, 17921353.
    • (2007) Genome Research , vol.17 , pp. 1614-1625
    • Ma, S.1    Gong, Q.2    Bohnert, H.J.3
  • 13
    • 2142732441 scopus 로고    scopus 로고
    • Large-Scale Simultaneous Hypothesis Testing: the Choice of a Null Hypothesis
    • Efron B. Large-Scale Simultaneous Hypothesis Testing: the Choice of a Null Hypothesis. Journal of the American Statistical Association 2004, 99:96-104.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 14
    • 47749156020 scopus 로고    scopus 로고
    • A Unified Approach to False Discovery Rate Estimation
    • 10.1186/1471-2105-9-303, 2475539, 18613966
    • Strimmer K. A Unified Approach to False Discovery Rate Estimation. BMC Bioinformatics 2008, 9:303. 10.1186/1471-2105-9-303, 2475539, 18613966.
    • (2008) BMC Bioinformatics , vol.9 , pp. 303
    • Strimmer, K.1
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 16
    • 40949165781 scopus 로고    scopus 로고
    • Augmenting the Bootstrap to Analyze High Dimensional Genomic Data
    • Tyekucheva S, Chiaromonte F. Augmenting the Bootstrap to Analyze High Dimensional Genomic Data. TEST 2008, 17:1-18.
    • (2008) TEST , vol.17 , pp. 1-18
    • Tyekucheva, S.1    Chiaromonte, F.2
  • 17
    • 41549143047 scopus 로고    scopus 로고
    • Comments on: Augmenting the Bootstrap to Analyze High Dimensional Genomic Data
    • Strimmer K. Comments on: Augmenting the Bootstrap to Analyze High Dimensional Genomic Data. TEST 2008, 17:25-27.
    • (2008) TEST , vol.17 , pp. 25-27
    • Strimmer, K.1
  • 18
    • 41549114014 scopus 로고    scopus 로고
    • Comments on: Augmenting the Bootstrap to Analyze High Dimensional Genomic Data
    • Schäfer J. Comments on: Augmenting the Bootstrap to Analyze High Dimensional Genomic Data. TEST 2008, 17:28-30.
    • (2008) TEST , vol.17 , pp. 28-30
    • Schäfer, J.1
  • 21
    • 66849143711 scopus 로고    scopus 로고
    • Covariance-regularized regression and and classification for high-dimensional problems
    • Witten D, Tibshirani R. Covariance-regularized regression and and classification for high-dimensional problems. Journal of Royal Statistical Society, Series B 2009, 71(3):615-636.
    • (2009) Journal of Royal Statistical Society, Series B , vol.71 , Issue.3 , pp. 615-636
    • Witten, D.1    Tibshirani, R.2
  • 22
    • 64249118378 scopus 로고    scopus 로고
    • Efficient Computation of ℓ1 Regularized Estimates in Gaussian Graphical Models
    • Yuan M. Efficient Computation of ℓ1 Regularized Estimates in Gaussian Graphical Models. Journal of Computational and Graphical Statistics 2008, 17(4):809-826.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , Issue.4 , pp. 809-826
    • Yuan, M.1
  • 23
    • 77952135179 scopus 로고    scopus 로고
    • Gene Association Networks from Microarray Data using a Regularized Estimation of Partial Correlation based on PLS Regression
    • Tenenhaus A, Guillemot V, Gidrol X, Frouin V. Gene Association Networks from Microarray Data using a Regularized Estimation of Partial Correlation based on PLS Regression. IEEE Transactions on Computational Biology and Bioinformatics 2008, , http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.87
    • (2008) IEEE Transactions on Computational Biology and Bioinformatics
    • Tenenhaus, A.1    Guillemot, V.2    Gidrol, X.3    Frouin, V.4
  • 25
    • 0001681052 scopus 로고
    • The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses
    • Wold S, Ruhe H, Wold H, Dunn WJ. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal of Scientific and Statistical Computations 1984, 5:735-743.
    • (1984) SIAM Journal of Scientific and Statistical Computations , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, H.2    Wold, H.3    Dunn, W.J.4
  • 27
    • 33846515112 scopus 로고    scopus 로고
    • Partial Least Squares: a Versatile Tool for the Analysis of High-Dimensional Genomic Data
    • 10.1093/bib/bbl016, 16772269
    • Boulesteix AL, Strimmer K. Partial Least Squares: a Versatile Tool for the Analysis of High-Dimensional Genomic Data. Briefings in Bioinformatics 2007, 8:32-44. 10.1093/bib/bbl016, 16772269.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 32-44
    • Boulesteix, A.L.1    Strimmer, K.2
  • 28
    • 0038259120 scopus 로고    scopus 로고
    • Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Spaces
    • Rosipal R, Trejo L. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Spaces. Journal of Machine Learning Research 2001, 2:97-123.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.2
  • 31
    • 73149096965 scopus 로고    scopus 로고
    • Sparse partial least squares for simultaneous dimension reduction and variable selection
    • Chun H, Keles S. Sparse partial least squares for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society 2009, 182(1):79-90.
    • (2009) Journal of the Royal Statistical Society , vol.182 , Issue.1 , pp. 79-90
    • Chun, H.1    Keles, S.2
  • 32
    • 0033906922 scopus 로고    scopus 로고
    • Ridge Regression: Biased Estimation for Nonorthogonal Problems
    • Hoerl A, Kennard R. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 2000, 42:80-86.
    • (2000) Technometrics , vol.42 , pp. 80-86
    • Hoerl, A.1    Kennard, R.2
  • 33
    • 33747163541 scopus 로고    scopus 로고
    • High Dimensional Graphs and Variable Selection with the Lasso
    • Meinshausen N, Bühlmann P. High Dimensional Graphs and Variable Selection with the Lasso. Annals of Statistics 2006, 34(3):1436-1462.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 35
    • 73149095821 scopus 로고    scopus 로고
    • Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling
    • arXiv:0903.2515v1
    • Zhou S, Geer S, Bühlmann P. Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling. 2009, arXiv:0903.2515v1.
    • (2009)
    • Zhou, S.1    Geer, S.2    Bühlmann, P.3
  • 36
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and its Oracle Properties
    • Zou H. The Adaptive Lasso and its Oracle Properties. Journal of the American Statistical Association 2006, 101(476):1418-1429.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 38
    • 34848908079 scopus 로고    scopus 로고
    • Reverse Engineering Genetic Networks using the GeneNet Package
    • Schäfer J, Opgen-Rhein R, Strimmer K. Reverse Engineering Genetic Networks using the GeneNet Package. R News 2006, 5/6:50-53.
    • (2006) R News , Issue.5-6 , pp. 50-53
    • Schäfer, J.1    Opgen-Rhein, R.2    Strimmer, K.3
  • 39
    • 73149085073 scopus 로고    scopus 로고
    • Erzeugung von positiv definiten Matrizen mit Nebenbedingungen zur Validierung von Netzwerkalgorithmen für Microarray-Daten
    • University of Munich
    • Ruschhaupt M. Erzeugung von positiv definiten Matrizen mit Nebenbedingungen zur Validierung von Netzwerkalgorithmen für Microarray-Daten. PhD thesis 2008, University of Munich.
    • (2008) PhD thesis
    • Ruschhaupt, M.1
  • 41
    • 79955037466 scopus 로고    scopus 로고
    • On the Peaking Phenomenon in Model Selection for the Lasso
    • http://arxiv.org/abs/0904.4416
    • Krämer N. On the Peaking Phenomenon in Model Selection for the Lasso. 2009, http://arxiv.org/abs/0904.4416.
    • (2009)
    • Krämer, N.1
  • 42
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based Determination of Multiple Transcription Regulator Activities in Escherichia Coli by Using Network Component Analysis
    • Kao K, Yang Y, Boscolo R, Sabatti C, Roychowdhury V, Liao J. Transcriptome-based Determination of Multiple Transcription Regulator Activities in Escherichia Coli by Using Network Component Analysis. Proceedings of the National Academy of Sciences 2004, 101(2):641-646.
    • (2004) Proceedings of the National Academy of Sciences , vol.101 , Issue.2 , pp. 641-646
    • Kao, K.1    Yang, Y.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.6
  • 44
    • 14744275289 scopus 로고    scopus 로고
    • Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves 1
    • 10.1104/pp.104.044347, 523333, 15347792
    • Smith S, Fulton D, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S, Smith A. Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves 1. Plant Physiology 2004, 136:2687-2699. 10.1104/pp.104.044347, 523333, 15347792.
    • (2004) Plant Physiology , vol.136 , pp. 2687-2699
    • Smith, S.1    Fulton, D.2    Chia, T.3    Thorneycroft, D.4    Chapple, A.5    Dunstan, H.6    Hylton, C.7    Zeeman, S.8    Smith, A.9
  • 46
    • 69249085408 scopus 로고    scopus 로고
    • Stability and aggregation of ranked gene lists
    • 10.1093/bib/bbp034, 19679825
    • Boulesteix AL, Slawski M. Stability and aggregation of ranked gene lists. Briefings in Bioinformatics 2009, 10(5):556-68. 10.1093/bib/bbp034, 19679825.
    • (2009) Briefings in Bioinformatics , vol.10 , Issue.5 , pp. 556-568
    • Boulesteix, A.L.1    Slawski, M.2
  • 47
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 10.1093/bioinformatics/btm344, 17720704
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507. 10.1093/bioinformatics/btm344, 17720704.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 48
    • 73149107004 scopus 로고    scopus 로고
    • Structure variability in Bayesian networks
    • http://arxiv.org/abs/0909.1685
    • Scutari M. Structure variability in Bayesian networks. 2009, http://arxiv.org/abs/0909.1685.
    • (2009)
    • Scutari, M.1
  • 49
    • 3343019470 scopus 로고
    • Measuring nominal scale agreement among many raters
    • Fleiss J. Measuring nominal scale agreement among many raters. Psychological Bulletin 1971, 76(5):378-382.
    • (1971) Psychological Bulletin , vol.76 , Issue.5 , pp. 378-382
    • Fleiss, J.1
  • 50
    • 41549164236 scopus 로고    scopus 로고
    • Comment on: Augmenting the bootstrap to analyze high dimensional genomic data
    • Boulesteix AL, Kondylis A, Krämer N. Comment on: Augmenting the bootstrap to analyze high dimensional genomic data. TEST 2008, 17:31-35.
    • (2008) TEST , vol.17 , pp. 31-35
    • Boulesteix, A.L.1    Kondylis, A.2    Krämer, N.3
  • 51
    • 54949156075 scopus 로고    scopus 로고
    • Combining Partial Correlation and an Information Theory Approach to the Reversed-engineering of Gene Co-expression Networks
    • 10.1093/bioinformatics/btn482, 18784117
    • Reverter A, Chan E. Combining Partial Correlation and an Information Theory Approach to the Reversed-engineering of Gene Co-expression Networks. Bioinformatics 2008, 24(21):2491-2497. 10.1093/bioinformatics/btn482, 18784117.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2491-2497
    • Reverter, A.1    Chan, E.2
  • 54
    • 45449097447 scopus 로고    scopus 로고
    • Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
    • 10.1093/bioinformatics/btn209, 18441000
    • Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008, 24:1461-1462. 10.1093/bioinformatics/btn209, 18441000.
    • (2008) Bioinformatics , vol.24 , pp. 1461-1462
    • Strimmer, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.