메뉴 건너뛰기




Volumn 64, Issue 6, 2012, Pages 1557-1566

Existence of solutions for fractional differential systems with antiperiodic boundary conditions

Author keywords

Anti periodic boundary conditions; Caputo fractional derivative; Fixed point theorem; Fractional differential equations

Indexed keywords

ANTI-PERIODIC; ANTIPERIODIC BOUNDARY CONDITION; CAPUTO FRACTIONAL DERIVATIVES; EXISTENCE AND UNIQUENESS OF SOLUTION; EXISTENCE OF SOLUTIONS; FIXED POINT THEOREMS; FIXED POINTS; FRACTIONAL DIFFERENTIAL; FRACTIONAL DIFFERENTIAL EQUATIONS;

EID: 84865626120     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.12.083     Document Type: Article
Times cited : (37)

References (28)
  • 5
    • 67650110018 scopus 로고    scopus 로고
    • A survey on semilinear differential equations and inclusions invovling Riemann-Liouville fractional derivative
    • Art. ID 981728
    • R.P. Agarwal, M. Belmekki, and M. Benchohra A survey on semilinear differential equations and inclusions invovling Riemann-Liouville fractional derivative Adv. Differential Equations 2009 47 Art. ID 981728
    • (2009) Adv. Differential Equations , pp. 47
    • Agarwal, R.P.1    Belmekki, M.2    Benchohra, M.3
  • 6
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • R.P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
    • (2010) Acta Appl. Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 7
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions of boundary value problems of nonlinear fractional differential equation
    • Z.B. Bai, and H.S. Lu Positive solutions of boundary value problems of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.B.1    Lu, H.S.2
  • 8
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differntial equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, and S.K. Ntouyas Boundary value problems for differntial equations with fractional order and nonlocal conditions Nonlinear Anal. 71 2009 2391 2396
    • (2009) Nonlinear Anal. , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 9
    • 74249102157 scopus 로고    scopus 로고
    • On initial and boundary value problems for fractional order mixed type functional differential inclusions
    • M.A. Darwish, and S.K. Ntouyas On initial and boundary value problems for fractional order mixed type functional differential inclusions Comput. Math. Appl. 59 2010 1253 1265
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1253-1265
    • Darwish, M.A.1    Ntouyas, S.K.2
  • 10
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differntial equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differntial equations Nonlinear Anal. 69 8 2009 2677 2682
    • (2009) Nonlinear Anal. , vol.69 , Issue.8 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 12
    • 58149145450 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order time-delay systems: Gronwall's approch
    • M.P. Lazarevic, and A.M. Spasic Finite-time stability analysis of fractional order time-delay systems: Gronwall's approch Math. Comput. Modelling 49 2009 475 481
    • (2009) Math. Comput. Modelling , vol.49 , pp. 475-481
    • Lazarevic, M.P.1    Spasic, A.M.2
  • 13
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • Y. Zhou, and F. Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. 11 2010 4465 4475
    • (2010) Nonlinear Anal. , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2
  • 14
    • 51349095119 scopus 로고    scopus 로고
    • Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with antiperiodic boundary conditions
    • B. Ahmad, and J.J. Nieto Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with antiperiodic boundary conditions Nonlinear Anal. 69 2008 3291 3298
    • (2008) Nonlinear Anal. , vol.69 , pp. 3291-3298
    • Ahmad, B.1    Nieto, J.J.2
  • 15
    • 34548445497 scopus 로고    scopus 로고
    • Antiperiodic solutions for fully nonlinear first-order differential equations
    • Y. Chen, J.J. Nieto, and D. O'Regan Antiperiodic solutions for fully nonlinear first-order differential equations Math. Comput. Modelling 46 9-10 2007 1183 1190
    • (2007) Math. Comput. Modelling , vol.46 , Issue.910 , pp. 1183-1190
    • Chen, Y.1    Nieto, J.J.2    O'Regan, D.3
  • 16
    • 78649957202 scopus 로고    scopus 로고
    • Anti-periodic solutions for evolution equations associated with maximal monotone mappings
    • Y. Chen, J.J. Nieto, and O'Regan Donal Anti-periodic solutions for evolution equations associated with maximal monotone mappings Appl. Math. Lett. 24 2011 302 307
    • (2011) Appl. Math. Lett. , vol.24 , pp. 302-307
    • Chen, Y.1    Nieto, J.J.2    Donal, O.'.3
  • 17
    • 73449132177 scopus 로고    scopus 로고
    • Anti-periodic solutions to nonlinear evolution equations
    • Z.H. Liu Anti-periodic solutions to nonlinear evolution equations J. Funct. Anal. 258 6 2010 2026 2033
    • (2010) J. Funct. Anal. , vol.258 , Issue.6 , pp. 2026-2033
    • Liu, Z.H.1
  • 18
    • 79960052572 scopus 로고    scopus 로고
    • On the existence of anti-periodic solutions for implicit differential equations
    • J.B. Liu, and Z.H. Liu On the existence of anti-periodic solutions for implicit differential equations Acta Math. Hungar. 132 3 2011 294 305
    • (2011) Acta Math. Hungar. , vol.132 , Issue.3 , pp. 294-305
    • Liu, J.B.1    Liu, Z.H.2
  • 19
    • 46449087782 scopus 로고    scopus 로고
    • Anti-periodic solutions for shuting inhibitory cellular neural networks with time-varying delays
    • J. Shao Anti-periodic solutions for shuting inhibitory cellular neural networks with time-varying delays Phys. Lett. A 372 2008 5011 5016
    • (2008) Phys. Lett. A , vol.372 , pp. 5011-5016
    • Shao, J.1
  • 20
    • 22144458353 scopus 로고    scopus 로고
    • Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions
    • Y. Wang, and Y.M. Shi Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions J. Math. Anal. Appl. 309 2005 56 69
    • (2005) J. Math. Anal. Appl. , vol.309 , pp. 56-69
    • Wang, Y.1    Shi, Y.M.2
  • 21
    • 84865637956 scopus 로고    scopus 로고
    • Existence of solutions for intergro-differential equations of fractional order with antiperiodic boundary conditions
    • 10.1155/2009/41706
    • Ahmed Alsaedi Existence of solutions for intergro-differential equations of fractional order with antiperiodic boundary conditions Int. J. Difference Equ. 2009 10.1155/2009/41706
    • (2009) Int. J. Difference Equ.
    • Alsaedi, A.1
  • 22
    • 68349123813 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions
    • Art. ID 625347
    • B. Ahmad, and V. Otero-Espinar Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions Bound. Value Probl. 2009 11 Art. ID 625347
    • (2009) Bound. Value Probl. , pp. 11
    • Ahmad, B.1    Otero-Espinar, V.2
  • 23
    • 77956315480 scopus 로고    scopus 로고
    • Existence of solutions for anti-periodic boundary value problems invovling fractional differential equations via Leray-Schauder degree theory
    • B. Ahmad, and J.J. Nieto Existence of solutions for anti-periodic boundary value problems invovling fractional differential equations via Leray-Schauder degree theory Topol. Methods Nonlinear Anal. 35 2010 295 304
    • (2010) Topol. Methods Nonlinear Anal. , vol.35 , pp. 295-304
    • Ahmad, B.1    Nieto, J.J.2
  • 24
    • 77956612516 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential equations of order q ∈ (2, 3 ] with anti-periodic boundary conditions
    • B. Ahmad Existence of solutions for fractional differential equations of order q ∈ (2, 3 ] with anti-periodic boundary conditions J. Appl. Math. Comput. 34 2010 385 391
    • (2010) J. Appl. Math. Comput. , vol.34 , pp. 385-391
    • Ahmad, B.1
  • 25
    • 79960972996 scopus 로고    scopus 로고
    • Anti-periodic fractional boundary value problems
    • 10.1016/j.camwa.2011.02.034
    • B. Ahmad, and J.J. Nieto Anti-periodic fractional boundary value problems Comput. Math. Appl. 2011 10.1016/j.camwa.2011.02.034
    • (2011) Comput. Math. Appl.
    • Ahmad, B.1    Nieto, J.J.2
  • 26
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a couple systems of nonliear fractional differential equations
    • X. Su Boundary value problem for a couple systems of nonliear fractional differential equations Appl. Math. Lett. 22 2009
    • (2009) Appl. Math. Lett. , vol.22
    • Su, X.1
  • 27
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a couple system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a couple system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.