메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 1150-1156

Anti-periodic fractional boundary value problems

Author keywords

Anti periodic boundary conditions; Existence; Fixed point theorem; Fixed point theorem contraction principle; Fractional differential equations

Indexed keywords

ANTI-PERIODIC; ANTI-PERIODIC BOUNDARY CONDITIONS; EXISTENCE; EXISTENCE AND UNIQUENESS RESULTS; FIXED POINT THEOREMS; FIXED POINTS; FRACTIONAL DIFFERENTIAL EQUATIONS;

EID: 79960972996     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.02.034     Document Type: Article
Times cited : (78)

References (20)
  • 5
    • 58049138945 scopus 로고    scopus 로고
    • Some new existence results for fractional differential inclusions with boundary conditions
    • Y.-K. Chang, and J.J. Nieto Some new existence results for fractional differential inclusions with boundary conditions Math. Comput. Modelling 49 2009 605 609
    • (2009) Math. Comput. Modelling , vol.49 , pp. 605-609
    • Chang, Y.-K.1    Nieto, J.J.2
  • 6
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 7
    • 67650110018 scopus 로고    scopus 로고
    • A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative
    • Art. ID 981728, 47 pp
    • R.P. Agarwal, M. Belmekki, and M. Benchohra A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative Adv. Difference Equ. 2009 Art. ID 981728, 47 pp
    • (2009) Adv. Difference Equ.
    • Agarwal, R.P.1    Belmekki, M.2    Benchohra, M.3
  • 8
    • 58149197948 scopus 로고    scopus 로고
    • Fractional functional differential inclusions with finite delay
    • J. Henderson, and A. Ouahab Fractional functional differential inclusions with finite delay Nonlinear Anal. 70 2009 2091 2105
    • (2009) Nonlinear Anal. , vol.70 , pp. 2091-2105
    • Henderson, J.1    Ouahab, A.2
  • 9
    • 74149085906 scopus 로고    scopus 로고
    • Mathematical modeling of different types of instabilities in time fractional reactiondiffusion systems
    • V. Gafiychuk, B. Datsko, and V. Meleshko Mathematical modeling of different types of instabilities in time fractional reactiondiffusion systems Comput. Math. Appl. 59 2010 1101 1107
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1101-1107
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 10
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • R.P. Agarwal, V. Lakshmikantham, and J.J. Nieto On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal. 72 2010 2859 2862
    • (2010) Nonlinear Anal. , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 11
    • 76749131977 scopus 로고    scopus 로고
    • Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations
    • B. Ahmad Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations Appl. Math. Lett. 23 2010 390 394
    • (2010) Appl. Math. Lett. , vol.23 , pp. 390-394
    • Ahmad, B.1
  • 12
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 13
    • 74249102157 scopus 로고    scopus 로고
    • On initial and boundary value problems for fractional order mixed type functional differential inclusions
    • M.A. Darwish, and S.K. Ntouyas On initial and boundary value problems for fractional order mixed type functional differential inclusions Comput. Math. Appl. 59 2010 1253 1265
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1253-1265
    • Darwish, M.A.1    Ntouyas, S.K.2
  • 14
    • 68349123813 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions
    • Art. ID 625347, 11 pp.
    • B. Ahmad, and V. Otero-Espinar Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions Bound. Value Probl. 2009 Art. ID 625347, 11 pp.
    • (2009) Bound. Value Probl.
    • Ahmad, B.1    Otero-Espinar, V.2
  • 15
    • 77956315480 scopus 로고    scopus 로고
    • Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via LeraySchauder degree theory
    • B. Ahmad, and J.J. Nieto Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via LeraySchauder degree theory Topol. Methods Nonlinear Anal. 35 2010 295 304
    • (2010) Topol. Methods Nonlinear Anal. , vol.35 , pp. 295-304
    • Ahmad, B.1    Nieto, J.J.2
  • 16
    • 77956612516 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential equations of order q ∈ (2, 3 ] with anti-periodic boundary conditions
    • B. Ahmad Existence of solutions for fractional differential equations of order q ∈ (2, 3 ] with anti-periodic boundary conditions J. Appl. Math. Comput. 34 2010 385 391
    • (2010) J. Appl. Math. Comput. , vol.34 , pp. 385-391
    • Ahmad, B.1
  • 17
    • 79961065200 scopus 로고    scopus 로고
    • Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations
    • R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (in press).
    • Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
    • Agarwal, R.P.1    Ahmad, B.2
  • 18
    • 78649957202 scopus 로고    scopus 로고
    • Anti-periodic solutions for evolution equations associated with maximal monotone mappings
    • Y. Chen, J.J. Nieto, and D. O'Regan Anti-periodic solutions for evolution equations associated with maximal monotone mappings Appl. Math. Lett. 24 3 2011 302 307
    • (2011) Appl. Math. Lett. , vol.24 , Issue.3 , pp. 302-307
    • Chen, Y.1    Nieto, J.J.2    O'Regan, D.3
  • 19
    • 78149286185 scopus 로고    scopus 로고
    • Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
    • G. Wang, B. Ahmad, and L. Zhang Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order Nonlinear Anal. Theory, Methods Appl. 74 3 2011 792 804
    • (2011) Nonlinear Anal. Theory, Methods Appl. , vol.74 , Issue.3 , pp. 792-804
    • Wang, G.1    Ahmad, B.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.