메뉴 건너뛰기




Volumn 22, Issue 3, 2012, Pages 205-214

SVM-based glioma grading: Optimization by feature reduction analysis

Author keywords

Computer aided diagnostics (CAD); Feature reduction; Glioma grading; Machine learning; Perfusion MRI; Support vector machines

Indexed keywords

ADOLESCENT; ADULT; AGE DISTRIBUTION; AGED; ARTICLE; BLOOD VOLUME; CANCER GRADING; CHILD; CORRELATION COEFFICIENT; DIAGNOSTIC ACCURACY; FEMALE; GLIOMA; HISTOGRAM; HISTOPATHOLOGY; HUMAN; INDEPENDENT COMPONENT ANALYSIS; MAJOR CLINICAL STUDY; MALE; MATHEMATICAL COMPUTING; NUCLEAR MAGNETIC RESONANCE IMAGING; PREDICTIVE VALUE; PRINCIPAL COMPONENT ANALYSIS; PROCESS OPTIMIZATION; SCHOOL CHILD; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; TUMOR CLASSIFICATION;

EID: 84865593031     PISSN: 09393889     EISSN: 18764436     Source Type: Journal    
DOI: 10.1016/j.zemedi.2012.03.007     Document Type: Article
Times cited : (59)

References (41)
  • 1
    • 0024407232 scopus 로고
    • Multiexponential proton spin-spin relaxation in MR imaging of human brain tumors
    • Schad L.R., Brix G., Zuna I., Harle W., Lorenz W.J., Semmler W. Multiexponential proton spin-spin relaxation in MR imaging of human brain tumors. J Comput Assist Tomogr 1989 Jul-Aug, 13(4):577-587.
    • (1989) J Comput Assist Tomogr , vol.13 , Issue.4 , pp. 577-587
    • Schad, L.R.1    Brix, G.2    Zuna, I.3    Harle, W.4    Lorenz, W.J.5    Semmler, W.6
  • 2
    • 0007363396 scopus 로고
    • Magnetic Resonance Imaging of Intracranial Tumors: Tissue Characterization by Means of Texture Analysis
    • Schad L.R., Härle W., Zuna I., Lorenz W.J. Magnetic Resonance Imaging of Intracranial Tumors: Tissue Characterization by Means of Texture Analysis. Z Med Phys 1992, 2:12-17.
    • (1992) Z Med Phys , vol.2 , pp. 12-17
    • Schad, L.R.1    Härle, W.2    Zuna, I.3    Lorenz, W.J.4
  • 3
    • 23844498705 scopus 로고    scopus 로고
    • Perfusion measurement using the T2*contrast media dynamics in neuro-oncology. Physical basics and clinical applications
    • Weber M.-A., Risse F., Giesel F.L., Schad L.R., Kauczor H.-U., Essig M. Perfusion measurement using the T2* contrast media dynamics in neuro-oncology. Physical basics and clinical applications. Radiologe 2005, 45(7):618-632.
    • (2005) Radiologe , vol.45 , Issue.7 , pp. 618-632
    • Weber, M.-A.1    Risse, F.2    Giesel, F.L.3    Schad, L.R.4    Kauczor, H.-U.5    Essig, M.6
  • 4
    • 0036867934 scopus 로고    scopus 로고
    • Dynamic susceptibility contrast MRI of gliomas
    • Aronen H.J., Perkiö J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 2002, 12(4):501-523.
    • (2002) Neuroimaging Clin N Am , vol.12 , Issue.4 , pp. 501-523
    • Aronen, H.J.1    Perkiö, J.2
  • 5
    • 4944232432 scopus 로고    scopus 로고
    • Dynamic magnetic resonance perfusion imaging of brain tumors
    • Covarrubias D.J., Rosen B.R., Lev M.H. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004, 9(5):528-537.
    • (2004) Oncologist , vol.9 , Issue.5 , pp. 528-537
    • Covarrubias, D.J.1    Rosen, B.R.2    Lev, M.H.3
  • 6
    • 0033004433 scopus 로고    scopus 로고
    • Glial neoplasms: dynamic contrast-enhanced T2-weighted MR imaging
    • et al
    • Knopp E.A., Cha S., Johnson G., Mazumdar A., Golfinos J.G., Zagzag D., et al. Glial neoplasms: dynamic contrast-enhanced T2-weighted MR imaging. Radiology 1999, 211(3):791-798.
    • (1999) Radiology , vol.211 , Issue.3 , pp. 791-798
    • Knopp, E.A.1    Cha, S.2    Johnson, G.3    Mazumdar, A.4    Golfinos, J.G.5    Zagzag, D.6
  • 7
    • 76649106726 scopus 로고    scopus 로고
    • Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities
    • Knutsson L., Stahlberg F., Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010, 23(1):1-21.
    • (2010) MAGMA , vol.23 , Issue.1 , pp. 1-21
    • Knutsson, L.1    Stahlberg, F.2    Wirestam, R.3
  • 8
    • 53549134971 scopus 로고    scopus 로고
    • Predictive Modeling in Glioma Grading from MR Perfusion Images using Support Vector Machines
    • Emblem K.E., Zoellner F.G., Tennoe B., Nedregaard B., Nome T., Due-Tonnessen P., et al. Predictive Modeling in Glioma Grading from MR Perfusion Images using Support Vector Machines. Magn Reson Med 2008, 60(4):945-952.
    • (2008) Magn Reson Med , vol.60 , Issue.4 , pp. 945-952
    • Emblem, K.E.1    Zoellner, F.G.2    Tennoe, B.3    Nedregaard, B.4    Nome, T.5    Due-Tonnessen, P.6
  • 9
    • 73149086838 scopus 로고    scopus 로고
    • Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
    • Zacharaki E.I., Wang S., Chawla S., Soo Yoo D., Wolf R., Melhem E.R., et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009, 62(6):1609-1618.
    • (2009) Magn Reson Med , vol.62 , Issue.6 , pp. 1609-1618
    • Zacharaki, E.I.1    Wang, S.2    Chawla, S.3    Soo Yoo, D.4    Wolf, R.5    Melhem, E.R.6
  • 10
    • 81855182180 scopus 로고    scopus 로고
    • Investigating machine learning techniques for MRI-based classification of brain neoplasms
    • Zacharaki E.I., Kanas V.G., Davatzikos C. Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 2011, 6(6):821-828. (http://dx.doi.org/10.1007/s11548-011-0559-3).
    • (2011) Int J Comput Assist Radiol Surg , vol.6 , Issue.6 , pp. 821-828
    • Zacharaki, E.I.1    Kanas, V.G.2    Davatzikos, C.3
  • 11
    • 77957320191 scopus 로고    scopus 로고
    • Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization
    • Zöllner F.G., Emblem K.E., Schad L.R. Support vector machines in DSC-based glioma imaging: Suggestions for optimal characterization. Magn Reson Med 2010, 64(4):1230-1236.
    • (2010) Magn Reson Med , vol.64 , Issue.4 , pp. 1230-1236
    • Zöllner, F.G.1    Emblem, K.E.2    Schad, L.R.3
  • 12
    • 35148852821 scopus 로고    scopus 로고
    • Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas
    • Young R., Babb J., Law M., Pollack E., Johnson G. Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 2007, 26(4):1053-1063.
    • (2007) J Magn Reson Imaging , vol.26 , Issue.4 , pp. 1053-1063
    • Young, R.1    Babb, J.2    Law, M.3    Pollack, E.4    Johnson, G.5
  • 13
    • 84865578196 scopus 로고    scopus 로고
    • Denver, Colorado, USA, J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik (Eds.)
    • Feature Selection for SVMs. Neural Information Processing Systems 2000, Denver, Colorado, USA. J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik (Eds.).
    • (2000) Feature Selection for SVMs. Neural Information Processing Systems
  • 15
    • 67650035155 scopus 로고    scopus 로고
    • Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering
    • Emblem K.E., Nedregaard B., Hald J.K., Nome T., Due-Tonnessen P., Bjornerud A. Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 2009, 30(1):1-10.
    • (2009) J Magn Reson Imaging , vol.30 , Issue.1 , pp. 1-10
    • Emblem, K.E.1    Nedregaard, B.2    Hald, J.K.3    Nome, T.4    Due-Tonnessen, P.5    Bjornerud, A.6
  • 16
    • 45149091277 scopus 로고    scopus 로고
    • Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps
    • Emblem K.E., Nedregaard B., Nome T., Due-Tonnessen P., Hald J.K., Scheie D., et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 2008, 247(3):808-817.
    • (2008) Radiology , vol.247 , Issue.3 , pp. 808-817
    • Emblem, K.E.1    Nedregaard, B.2    Nome, T.3    Due-Tonnessen, P.4    Hald, J.K.5    Scheie, D.6
  • 17
    • 54249169712 scopus 로고    scopus 로고
    • Histogram Analysis of MR-derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes
    • Emblem K.E., Scheie D., Due-Tonnessen P., Nedregaard B., Nome T., Hald J.K., et al. Histogram Analysis of MR-derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes. AJNR Am J Neuroradiol 2008, 29:1664-1670.
    • (2008) AJNR Am J Neuroradiol , vol.29 , pp. 1664-1670
    • Emblem, K.E.1    Scheie, D.2    Due-Tonnessen, P.3    Nedregaard, B.4    Nome, T.5    Hald, J.K.6
  • 18
    • 33748084051 scopus 로고    scopus 로고
    • Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
    • 04
    • Boxerman J.L., Schmainda K.M., Weisskoff R.M. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006, 27(4):859-867. 04.
    • (2006) AJNR Am J Neuroradiol , vol.27 , Issue.4 , pp. 859-867
    • Boxerman, J.L.1    Schmainda, K.M.2    Weisskoff, R.M.3
  • 19
    • 58149145310 scopus 로고    scopus 로고
    • Preoperative prognostic classification system for hemispheric low-grade gliomas in adults
    • Chang E.F., Smith J.S., Chang S.M., Lamborn K.R., Prados M.D., Butowski N., et al. Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg 2008, 109(5):817-824.
    • (2008) J Neurosurg , vol.109 , Issue.5 , pp. 817-824
    • Chang, E.F.1    Smith, J.S.2    Chang, S.M.3    Lamborn, K.R.4    Prados, M.D.5    Butowski, N.6
  • 20
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • [doi: DOI:10.1016/S1088-467X(97)00008-5]
    • Dash M., Liu H. Feature selection for classification. Intelligent Data Analysis 1997, 1(1-4):131-156. [doi: DOI:10.1016/S1088-467X(97)00008-5].
    • (1997) Intelligent Data Analysis , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • Guyon I., Elisseeff A. An Introduction to Variable and Feature Selection. J Machine Learning Research 2003, 3:1157-1182.
    • (2003) J Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artificial Intelligence 1996, 97(1-2):273-324.
    • (1996) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 24
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000, 13(4-5):411-430.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 25
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999, 10(3):626-634.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 26
    • 84945200962 scopus 로고    scopus 로고
    • software for investigating the reliability of ICA estimates by clustering and visualization
    • IEEE, editors. Icasso:
    • Himberg J, Hyvarinen A, editors. Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. IEEE Workshop on Neural Networks for Signal Processing 2003: IEEE.
    • (2003) IEEE Workshop on Neural Networks for Signal Processing
    • Himberg, J.1    Hyvarinen, A.2
  • 28
    • 23744442946 scopus 로고    scopus 로고
    • Universal Learning Technology: Support Vector Machines
    • Vapnik V. Universal Learning Technology: Support Vector Machines. NEC Journal of Advanced Technology 2005, 2(2):137-144.
    • (2005) NEC Journal of Advanced Technology , vol.2 , Issue.2 , pp. 137-144
    • Vapnik, V.1
  • 30
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • National Taiwan University2001 , 26.10.2009, Manual:
    • Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. Manual: Department of Computer Science and Information Engineering, National Taiwan University2001 , 26.10.2009. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Department of Computer Science and Information Engineering
    • Chang, C.-C.1    Lin, C.-J.2
  • 31
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 1979, 6(2):65-70.
    • (1979) Scandinavian Journal of Statistics , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 32
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • McNemar Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12(2):153-157.
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 33
    • 0037381038 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine learning
    • Cao L.J., Chua K.S., Chong W.K., Lee H.P., Gu Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine learning. Neurocomputing 2003, 55:321-336.
    • (2003) Neurocomputing , vol.55 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 34
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis--Based on principal curves and neural networks
    • Dong D., McAvoy T.J. Nonlinear principal component analysis--Based on principal curves and neural networks. Computers & Chemical Engineering 1996, 20(1):65-78.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 35
    • 33646875697 scopus 로고    scopus 로고
    • Support Vector Machines for Dyadic Data
    • Hochreiter S., Obermayer K. Support Vector Machines for Dyadic Data. Neural Computation 2006, 18:1472-1510.
    • (2006) Neural Computation , vol.18 , pp. 1472-1510
    • Hochreiter, S.1    Obermayer, K.2
  • 36
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. J Mach Learn Res 2004, 5:1531-1555.
    • (2004) J Mach Learn Res , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H.C., Long F.H., Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005, 27(8):1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 39
    • 34848833884 scopus 로고    scopus 로고
    • Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging
    • Zonari P., Baraldi P., Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 2007, 49(10):795-803.
    • (2007) Neuroradiology , vol.49 , Issue.10 , pp. 795-803
    • Zonari, P.1    Baraldi, P.2    Crisi, G.3
  • 40
    • 83155165157 scopus 로고    scopus 로고
    • Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction
    • Garzon B., Emblem K.E., Mouridsen K., Nedregaard B., Due-Tonnessen P., Nome T., et al. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction. Acta Radiol 2011, 52(9):1052-1060.
    • (2011) Acta Radiol , vol.52 , Issue.9 , pp. 1052-1060
    • Garzon, B.1    Emblem, K.E.2    Mouridsen, K.3    Nedregaard, B.4    Due-Tonnessen, P.5    Nome, T.6
  • 41
    • 84865606637 scopus 로고    scopus 로고
    • Machine Learning from imbalanced Data Sets 101. AAAI 2000 Workshop on Imbalanced Data Sets; AAAI Press.
    • Provost F, editor. Machine Learning from imbalanced Data Sets 101. AAAI 2000 Workshop on Imbalanced Data Sets; 2000: AAAI Press.
    • (2000)
    • Provost, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.