메뉴 건너뛰기




Volumn 21, Issue 9, 2012, Pages 3850-3864

Universal regularizers for robust sparse coding and modeling

Author keywords

Classification; denoising; dictionary learning; sparse coding; universal coding; zooming

Indexed keywords

DE-NOISING; DICTIONARY LEARNING; SPARSE CODING; UNIVERSAL CODING; ZOOMING;

EID: 84865443625     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2197006     Document Type: Article
Times cited : (28)

References (53)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. Bruckstein, "The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006. (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 0034299822 scopus 로고    scopus 로고
    • Multi-frame compression: Theory and design
    • Oct
    • K. Engan, S. Aase, and J. Husoy, "Multi-frame compression: Theory and design," Signal Process., vol. 80, no. 10, pp. 2121-2140, Oct. 2000.
    • (2000) Signal Process. , vol.80 , Issue.10 , pp. 2121-2140
    • Engan, K.1    Aase, S.2    Husoy, J.3
  • 3
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • B. Olshausen and D. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?" Vision Res., vol. 37, no. 23, pp. 3311-3325, 1997. (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 4
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, 2004. (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 9
    • 55149117992 scopus 로고    scopus 로고
    • Learning multiscale sparse representations for image and video restoration
    • Apr
    • J. Mairal, G. Sapiro, and M. Elad, "Learning multiscale sparse representations for image and video restoration," Comput. Inform. Sci., vol. 7, no. 1, pp. 214-241, Apr. 2008.
    • (2008) Comput. Inform. Sci. , vol.7 , Issue.1 , pp. 214-241
    • Mairal, J.1    Sapiro, G.2    Elad, M.3
  • 11
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Feb
    • A. Bruckstein, D. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images," SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.1    Donoho, D.2    Elad, M.3
  • 13
    • 0141460296 scopus 로고    scopus 로고
    • Adaptive sparseness using jeffreys prior
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, Dec.
    • M. Figueiredo, "Adaptive sparseness using Jeffreys prior," in Adv. NIPS, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, Dec. 2001, pp. 697-704.
    • (2001) Adv. NIPS , pp. 697-704
    • Figueiredo, M.1
  • 14
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou, "The adaptive LASSO and its oracle properties," J. Amer. Stat. Assoc., vol. 101, no. 476, pp. 1418-1429, 2006.
    • (2006) J. Amer. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 15
    • 0021466584 scopus 로고
    • Universal coding, information, prediction and estimation
    • J. Rissanen, "Universal coding, information, prediction and estimation," IEEE Trans. Inform. Theory, vol. 30, no. 4, pp. 629-636, Jul. 1984. (Pubitemid 14632095)
    • (1984) IEEE Transactions on Information Theory , vol.IT-30 , Issue.4 , pp. 629-636
    • Rissanen, J.1
  • 16
    • 0026686048 scopus 로고
    • Entropy-based algorithms for best basis selection
    • Mar
    • R. Coifman and M. Wickenhauser, "Entropy-based algorithms for best basis selection," IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 713-718, Mar. 1992.
    • (1992) IEEE Trans. Inform. Theory , vol.38 , Issue.2 , pp. 713-718
    • Coifman, R.1    Wickenhauser, M.2
  • 17
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of multiresolution image denoising schemes using generalized-gaussian and complexity priors
    • Apr
    • P. Moulin and J. Liu, "Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors," IEEE Trans. Inform. Theory, vol. 45, no. 3, pp. 909-919, Apr. 1999.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , Issue.3 , pp. 909-919
    • Moulin, P.1    Liu, J.2
  • 18
    • 0001214046 scopus 로고
    • Simultaneous noise suppression and signal compression using a library of orthonormal bases and the mdl criterion
    • E. Foufoula-Georgiou and P. Kumar, Eds. New York: Academic
    • N. Saito, "Simultaneous noise suppression and signal compression using a library of orthonormal bases and the MDL criterion," in Wavelets in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds. New York: Academic, 1994.
    • (1994) Wavelets in Geophysics
    • Saito, N.1
  • 19
  • 20
    • 84861121463 scopus 로고    scopus 로고
    • An mdl framework for sparse coding and dictionary learning
    • Jun
    • I. Ramírez and G. Sapiro, "An MDL framework for sparse coding and dictionary learning," IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2913-2927, Jun. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.6 , pp. 2913-2927
    • Ramírez, I.1    Sapiro, G.2
  • 21
    • 0027842081 scopus 로고
    • Matching pursuit in a time-frequency dictionary
    • Dec
    • S. Mallat and Z. Zhang, "Matching pursuit in a time-frequency dictionary," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 23
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Royal Stat. Soc. Series B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Royal Stat. Soc. Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 0034298708 scopus 로고    scopus 로고
    • A mathematical analysis of the dct coefficient distributions for images
    • Oct
    • E. Lam and J. Goodman, "A mathematical analysis of the DCT coefficient distributions for images," IEEE Trans. Image Process, vol. 9, no. 10, pp. 1661-1666, Oct. 2000.
    • (2000) IEEE Trans. Image Process , vol.9 , Issue.10 , pp. 1661-1666
    • Lam, E.1    Goodman, J.2
  • 27
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • DOI 10.1109/TSP.2007.914345
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 28
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn., vol. 1, pp. 211-244, Jan. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 29
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • DOI 10.1109/TSP.2007.894265
    • D. Wipf and B. Rao, "An empirical bayesian strategy for solving the simultaneous sparse approximation problem," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704-3716, Jul. 2007. (Pubitemid 47018850)
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.7 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 32
  • 33
    • 0023380770 scopus 로고
    • Universal sequential coding of single messages
    • Jul
    • Y. Shtarkov, "Universal sequential coding of single messages," Probl. Inform. Trans., vol. 23, no. 3, pp. 3-17, Jul. 1987.
    • (1987) Probl. Inform. Trans. , vol.23 , Issue.3 , pp. 3-17
    • Shtarkov, Y.1
  • 35
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz, "Estimating the dimension of a model," Ann. Stat., vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwartz, G.1
  • 36
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan and R. Li, "Variable selection via nonconcave penalized likelihood and its oracle properties," J. Amer. Stat. Assoc., vol. 96, no. 456, pp. 1348-1360, Dec. 2001. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 37
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted 1 minimization
    • Dec
    • E. J. Candès, M.Wakin, and S. Boyd, "Enhancing sparsity by reweighted 1 minimization," J. Fourier Anal. Appl., vol. 14, no. 5, pp. 877-905, Dec. 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5 , pp. 877-905
    • Candès, E.J.1    Wakin, M.2    Boyd, S.3
  • 39
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1
    • S. Foucart and M. Lai, "Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1," Appl. Comput. Harmonic Anal., vol. 3, no. 26, pp. 395-407, 2009.
    • (2009) Appl. Comput. Harmonic Anal. , vol.3 , Issue.26 , pp. 395-407
    • Foucart, S.1    Lai, M.2
  • 40
    • 70350503590 scopus 로고    scopus 로고
    • Relaxed conditions for sparse signal recovery with general concave priors
    • Nov
    • J. Trzasko and A. Manduca, "Relaxed conditions for sparse signal recovery with general concave priors," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4347-4354, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4347-4354
    • Trzasko, J.1    Manduca, A.2
  • 41
    • 70449490591 scopus 로고    scopus 로고
    • Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data
    • Jun.
    • R. Chartrand, "Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data," in Proc. IEEE Biomed. Imag.: From Nano Macro Int. Symp., Jun. 2009, pp. 262-265.
    • (2009) Proc. IEEE Biomed. Imag.: From Nano Macro Int. Symp. , pp. 262-265
    • Chartrand, R.1
  • 42
    • 58049195322 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction via homotopic 0-minimization
    • Jan
    • J. Trzasko and A. Manduca, "Highly undersampled magnetic resonance image reconstruction via homotopic 0-minimization," IEEE Trans. Med. Imag., vol. 28, no. 1, pp. 106-121, Jan. 2009.
    • (2009) IEEE Trans. Med. Imag. , vol.28 , Issue.1 , pp. 106-121
    • Trzasko, J.1    Manduca, A.2
  • 44
    • 0032183995 scopus 로고    scopus 로고
    • The Minimum Description Length Principle in Coding and Modeling
    • PII S0018944898052845
    • A. Barron, J. Rissanen, and B. Yu, "The minimum description length principle in coding and modeling," IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2743-2760, Oct. 1998. (Pubitemid 128741906)
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 45
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • H. Zou and R. Li, "One-step sparse estimates in nonconcave penalized likelihood models," Ann. Stat., vol. 36, no. 4, pp. 1509-1533, 2008.
    • (2008) Ann. Stat. , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.2
  • 46
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with non-convex penalties and dc programming
    • Dec
    • G. Gasso, A. Rakotomamonjy, and S. Canu, "Recovering sparse signals with non-convex penalties and DC programming," IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4686-4698, Dec. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 49
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • Jun.
    • I. Ramírez, P. Sprechmann, and G. Sapiro, "Classification and clustering via dictionary learning with structured incoherence and shared features," in Proc. IEEE Comput. Vision Pattern Recogn. Conf., Jun. 2010, pp. 3501-3508.
    • (2010) Proc. IEEE Comput. Vision Pattern Recogn. Conf. , pp. 3501-3508
    • Ramírez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 50
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Oct
    • J. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.1
  • 51
    • 36749022762 scopus 로고    scopus 로고
    • Optimized projections for compressed-sensing
    • Dec
    • M. Elad, "Optimized projections for compressed-sensing," IEEE Trans. Signal Process., vol. 55, no. 12, pp. 5695-5702, Dec. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.12 , pp. 5695-5702
    • Elad, M.1
  • 52
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity
    • May.
    • G. Yu, G. Sapiro, and S. Mallat, "Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2481-2499, May 2011.
    • (2011) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3
  • 53
    • 0742286341 scopus 로고    scopus 로고
    • Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems
    • Feb
    • R. Neelamani, H. Choi, and R. Baraniuk, "Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 418-433, Feb. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.2 , pp. 418-433
    • Neelamani, R.1    Choi, H.2    Baraniuk, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.