메뉴 건너뛰기




Volumn 27, Issue 4, 2012, Pages 757-777

Density estimation and comparison with a penalized mixture approach

Author keywords

ANOVA; Density estimation; Mixture density estimation; Penalized spline smoothing

Indexed keywords


EID: 84868363866     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-011-0289-6     Document Type: Article
Times cited : (30)

References (58)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom 19(6): 716-723.
    • (1974) IEEE Trans Autom , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0036643724 scopus 로고    scopus 로고
    • Application of bernstein polynomials for smooth estimation of a distribution and density function
    • Babu GJ, Canty AJ, Chaubey YP (2002) Application of bernstein polynomials for smooth estimation of a distribution and density function. J Stat Plan Infer 105(2): 377-392.
    • (2002) J Stat Plan Infer , vol.105 , Issue.2 , pp. 377-392
    • Babu, G.J.1    Canty, A.J.2    Chaubey, Y.P.3
  • 4
    • 0003064476 scopus 로고
    • Spline transformations: three new diagnostic aids for the statistical data- analyst
    • Boneva LI, Kendall D, Stefanov I (1971) Spline transformations: three new diagnostic aids for the statistical data- analyst. J R Stat Soc Ser B 33(1): 1-71.
    • (1971) J R Stat Soc Ser B , vol.33 , Issue.1 , pp. 1-71
    • Boneva, L.I.1    Kendall, D.2    Stefanov, I.3
  • 5
    • 0002647572 scopus 로고
    • The computation of all the derivatives of a b-spline basis
    • Butterfield K (1976) The computation of all the derivatives of a b-spline basis. IMA J Appl Math 17(1): 15-25.
    • (1976) IMA J Appl Math , vol.17 , Issue.1 , pp. 15-25
    • Butterfield, K.1
  • 6
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • doi:10.1007/BF01246098
    • Celeux G, Soromenho G (1996) An entropy criterion for assessing the number of clusters in a mixture model. J Classif 13: 195-212. doi: 10. 1007/BF01246098.
    • (1996) J Classif , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 7
    • 69249171674 scopus 로고    scopus 로고
    • Asymptotic properties of penalized spline estimators
    • Claeskens G, Krivobokova T, Opsomer J (2009) Asymptotic properties of penalized spline estimators. Biometrika 96(3): 529-544.
    • (2009) Biometrika , vol.96 , Issue.3 , pp. 529-544
    • Claeskens, G.1    Krivobokova, T.2    Opsomer, J.3
  • 9
    • 0032223158 scopus 로고    scopus 로고
    • Density estimation via hybrid splines
    • Dias R (1998) Density estimation via hybrid splines. J Stat Comput Simul 60(4): 277-293.
    • (1998) J Stat Comput Simul , vol.60 , Issue.4 , pp. 277-293
    • Dias, R.1
  • 10
    • 0030335219 scopus 로고    scopus 로고
    • Using specially designed exponential families for density estimation
    • Efron B, Tibshirani R (1996) Using specially designed exponential families for density estimation. Ann Stat 24(6): 2431-2461.
    • (1996) Ann Stat , vol.24 , Issue.6 , pp. 2431-2461
    • Efron, B.1    Tibshirani, R.2
  • 11
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2): 89-121.
    • (1996) Stat Sci , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 12
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458): 611-631.
    • (2002) J Am Stat Assoc , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 10944222639 scopus 로고    scopus 로고
    • Smooth random effects distribution in a linear mixed model
    • Ghidey W, Lesaffre E, Eilers PHC (2004) Smooth random effects distribution in a linear mixed model. Biometrics 60(4): 945-953.
    • (2004) Biometrics , vol.60 , Issue.4 , pp. 945-953
    • Ghidey, W.1    Lesaffre, E.2    Eilers, P.H.C.3
  • 14
    • 0000451036 scopus 로고
    • Nonparametric roughness penalties for probability densities
    • Good IJ, Gaskins RA (1971) Nonparametric roughness penalties for probability densities. Biometrika 58(2): 255-277.
    • (1971) Biometrika , vol.58 , Issue.2 , pp. 255-277
    • Good, I.J.1    Gaskins, R.A.2
  • 15
    • 21144484353 scopus 로고
    • Smoothing spline density estimation: A dimensionless automatic algorithm
    • Gu C (1993) Smoothing spline density estimation: A dimensionless automatic algorithm. J Am Stat Assoc 88(422): 495-504.
    • (1993) J Am Stat Assoc , vol.88 , Issue.422 , pp. 495-504
    • Gu, C.1
  • 17
    • 0141796394 scopus 로고    scopus 로고
    • Penalized likelihood density estimation: direct cross-validation and scalable approximation
    • Gu C, Wang J (2003) Penalized likelihood density estimation: direct cross-validation and scalable approximation. Statistica Sinica 13(3): 811-826.
    • (2003) Statistica Sinica , vol.13 , Issue.3 , pp. 811-826
    • Gu, C.1    Wang, J.2
  • 18
    • 0001249413 scopus 로고
    • Formulae for mean integrated squared error of nonlinear wavelet-based density estimators
    • Hall P, Patil P (1995) Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. Ann Stat 23(3): 905-928.
    • (1995) Ann Stat , vol.23 , Issue.3 , pp. 905-928
    • Hall, P.1    Patil, P.2
  • 19
    • 80052029170 scopus 로고
    • Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models)
    • Kass RE, Steffey D (1989) Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). J Am Stat Assoc 84(407): 717-726.
    • (1989) J Am Stat Assoc , vol.84 , Issue.407 , pp. 717-726
    • Kass, R.E.1    Steffey, D.2
  • 20
    • 5444237700 scopus 로고    scopus 로고
    • A note on smoothing parameter selection for penalised spline smoothing
    • Kauermann G (2005) A note on smoothing parameter selection for penalised spline smoothing. J Stat Plan Infer 127(1-2): 53-69.
    • (2005) J Stat Plan Infer , vol.127 , Issue.1-2 , pp. 53-69
    • Kauermann, G.1
  • 21
    • 62849127605 scopus 로고    scopus 로고
    • Some asymptotic results on generalized penalized spline smoothing
    • Kauermann G, Krivobokova T, Fahrmeir L (2009) Some asymptotic results on generalized penalized spline smoothing. J R Stat Soc Ser B 71(2): 487-503.
    • (2009) J R Stat Soc Ser B , vol.71 , Issue.2 , pp. 487-503
    • Kauermann, G.1    Krivobokova, T.2    Fahrmeir, L.3
  • 22
    • 79952127443 scopus 로고    scopus 로고
    • Data-driven selection of the spline dimension in penalized spline regression
    • Kauermann G, Opsomer J (2011) Data-driven selection of the spline dimension in penalized spline regression. Biometrika 98(1): 225-230.
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 225-230
    • Kauermann, G.1    Opsomer, J.2
  • 24
    • 40249084540 scopus 로고    scopus 로고
    • Generalized linear mixed model with a penalized gaussian mixture as a random-effects distribution
    • Komárek A, Lesaffre E (2008) Generalized linear mixed model with a penalized gaussian mixture as a random-effects distribution. Comput Stat Data Anal 52(7): 3441-3458.
    • (2008) Comput Stat Data Anal , vol.52 , Issue.7 , pp. 3441-3458
    • Komárek, A.1    Lesaffre, E.2
  • 25
    • 26644463884 scopus 로고    scopus 로고
    • Accelerated failure time model for arbitrarily censored data with smoothed error distribution
    • Komárek A, Lesaffre E, Hilton J (2005) Accelerated failure time model for arbitrarily censored data with smoothed error distribution. J Comput Graph Stat 14(3): 726-745.
    • (2005) J Comput Graph Stat , vol.14 , Issue.3 , pp. 726-745
    • Komárek, A.1    Lesaffre, E.2    Hilton, J.3
  • 26
    • 0033240214 scopus 로고    scopus 로고
    • Logspline density estimation under censoring and truncation
    • Koo JY, Kooperberg C, Park J (1999) Logspline density estimation under censoring and truncation. Scand J Stat 26(1): 87-105.
    • (1999) Scand J Stat , vol.26 , Issue.1 , pp. 87-105
    • Koo, J.Y.1    Kooperberg, C.2    Park, J.3
  • 29
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penalized splines
    • Li Y, Ruppert D (2008) On the asymptotics of penalized splines. Biometrika 95(2): 415-436.
    • (2008) Biometrika , vol.95 , Issue.2 , pp. 415-436
    • Li, Y.1    Ruppert, D.2
  • 30
    • 0010886894 scopus 로고
    • Comparison of probability distributions
    • Lindsey JK (1974) Comparison of probability distributions. J R Stat Soc Ser B 36(1): 38-47.
    • (1974) J R Stat Soc Ser B , vol.36 , Issue.1 , pp. 38-47
    • Lindsey, J.K.1
  • 31
    • 0001465359 scopus 로고
    • Construction and comparison of statistical models
    • Lindsey JK (1974) Construction and comparison of statistical models. J R Stat Soc Ser B 36(3): 418-425.
    • (1974) J R Stat Soc Ser B , vol.36 , Issue.3 , pp. 418-425
    • Lindsey, J.K.1
  • 32
    • 77950649478 scopus 로고    scopus 로고
    • A functional EM algorithm for mixing density estimation via nonparametric penalized likelihood maximization
    • Liu L, Levine M, Zhu Y (2009) A functional EM algorithm for mixing density estimation via nonparametric penalized likelihood maximization. J Comput Graph Stat 18(2): 481-504.
    • (2009) J Comput Graph Stat , vol.18 , Issue.2 , pp. 481-504
    • Liu, L.1    Levine, M.2    Zhu, Y.3
  • 35
    • 0001371660 scopus 로고
    • On the integral mean square error of some nonparametric estimates for the density function
    • Nadaraya E (1974) On the integral mean square error of some nonparametric estimates for the density function. Theory Prob Appl 19(1): 133-141.
    • (1974) Theory Prob Appl , vol.19 , Issue.1 , pp. 133-141
    • Nadaraya, E.1
  • 36
    • 0000570382 scopus 로고
    • On estimating regression
    • Nadaraya EA (1964) On estimating regression. Theory Prob Appl 9(1): 141-142.
    • (1964) Theory Prob Appl , vol.9 , Issue.1 , pp. 141-142
    • Nadaraya, E.A.1
  • 40
    • 84972545853 scopus 로고
    • A statistical perspective on ill-posed inverse problems
    • O'Sullivan F (1986) A statistical perspective on ill-posed inverse problems. Stat Sci 1(4): 502-518.
    • (1986) Stat Sci , vol.1 , Issue.4 , pp. 502-518
    • O'Sullivan, F.1
  • 41
    • 62849093921 scopus 로고    scopus 로고
    • Smoothing parameter selection for a class of semiparametric linear models
    • Reiss T, Ogden R (2009) Smoothing parameter selection for a class of semiparametric linear models. J R Stat Soc Ser B 71(2): 505-523.
    • (2009) J R Stat Soc Ser B , vol.71 , Issue.2 , pp. 505-523
    • Reiss, T.1    Ogden, R.2
  • 42
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71(2): 319-392.
    • (2009) J R Stat Soc Ser B , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 43
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • Ruppert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11(4): 735-757.
    • (2002) J Comput Graph Stat , vol.11 , Issue.4 , pp. 735-757
    • Ruppert, D.1
  • 45
    • 84884959104 scopus 로고    scopus 로고
    • Semiparametric regression during 2003-2007
    • Ruppert D, Wand MP, Carroll RJ (2009) Semiparametric regression during 2003-2007. Electron J Stat 3: 1193-1256.
    • (2009) Electron J Stat , vol.3 , pp. 1193-1256
    • Ruppert, D.1    Wand, M.P.2    Carroll, R.J.3
  • 46
    • 77956888303 scopus 로고
    • Estimation in generalized linear models with random effects
    • Schall R (1991) Estimation in generalized linear models with random effects. Biometrika 78(4): 719-727.
    • (1991) Biometrika , vol.78 , Issue.4 , pp. 719-727
    • Schall, R.1
  • 49
    • 0001268552 scopus 로고
    • A reliable data-based bandwidth selection method for kernel density estimation
    • Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B 53(3): 683-690.
    • (1991) J R Stat Soc Ser B , vol.53 , Issue.3 , pp. 683-690
    • Sheather, S.J.1    Jones, M.C.2
  • 50
    • 0000738873 scopus 로고
    • On the estimation of a probability density function by the maximum penalized likelihood method
    • Silverman BW (1982) On the estimation of a probability density function by the maximum penalized likelihood method. Ann Stat 10(3): 795-810.
    • (1982) Ann Stat , vol.10 , Issue.3 , pp. 795-810
    • Silverman, B.W.1
  • 52
    • 0038170349 scopus 로고    scopus 로고
    • Smoothing and mixed models
    • Wand M (2003) Smoothing and mixed models. Comput Stat 18(2): 223-249.
    • (2003) Comput Stat , vol.18 , Issue.2 , pp. 223-249
    • Wand, M.1
  • 54
    • 47249158963 scopus 로고    scopus 로고
    • On semiparametric regression with O'Sullivan penalised splines
    • Wand MP, Ormerod JT (2008) On semiparametric regression with O'Sullivan penalised splines. Aust N Z J Stat 50(2): 179-198.
    • (2008) Aust N Z J Stat , vol.50 , Issue.2 , pp. 179-198
    • Wand, M.P.1    Ormerod, J.T.2
  • 55
    • 0001762424 scopus 로고
    • Smooth regression analysis
    • Watson G (1964) Smooth regression analysis. Sankhya Ser A 26: 359-372.
    • (1964) Sankhya Ser A , vol.26 , pp. 359-372
    • Watson, G.1
  • 56
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
    • Wood S (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B 73(1): 3-36.
    • (2011) J R Stat Soc Ser B , vol.73 , Issue.1 , pp. 3-36
    • Wood, S.1
  • 58
    • 70450203033 scopus 로고    scopus 로고
    • mixtools: an R package for analyzing mixture models
    • Young D, Hunter D, Chauveau D, Benaglia T (2009) mixtools: an R package for analyzing mixture models. J Stat Softw 32(6): 1-29.
    • (2009) J Stat Softw , vol.32 , Issue.6 , pp. 1-29
    • Young, D.1    Hunter, D.2    Chauveau, D.3    Benaglia, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.