메뉴 건너뛰기




Volumn 6, Issue 3, 2012, Pages 536-565

Parallel statistical computing for statistical inference

Author keywords

Nonparametric inference; Regression; Statistical computing; Stochastic processes

Indexed keywords


EID: 84865266921     PISSN: 15598608     EISSN: 15598616     Source Type: Journal    
DOI: 10.1080/15598608.2012.695705     Document Type: Review
Times cited : (22)

References (97)
  • 1
    • 21344438347 scopus 로고    scopus 로고
    • A review of parallel processing for statistical computation
    • Adams, N. M., S. P. J. Kirby, P. Harris, and D. B. Clegg. 1996. A review of parallel processing for statistical computation. Statist. Computing, 6, 37-49. (Pubitemid 126716898)
    • (1996) Statistics and Computing , vol.6 , Issue.1 , pp. 37-49
    • Adams, N.M.1    Kirby, S.P.J.2    Harris, P.3    Clegg, D.B.4
  • 2
    • 37849042857 scopus 로고    scopus 로고
    • Newton additive and multiplicative Schwarz iterative methods
    • Arnal, J., V.Migallon, J. Penades, and D. B. Szyld. 2008. Newton additive and multiplicative Schwarz iterative methods. IMA J. Numer. Anal., 28, 143-161.
    • (2008) IMA J. Numer. Anal. , vol.28 , pp. 143-161
    • Arnal, J.1    Migallon, V.2    Penades, J.3    Szyld, D.B.4
  • 7
    • 0008413109 scopus 로고
    • The arithmetic mean method for finding the stationary vector of Markov chains
    • Benzi, M., and T. Dayar. 1995. The arithmetic mean method for finding the stationary vector of Markov chains. Parallel Algorithms Appl., 6, 25-37.
    • (1995) Parallel Algorithms Appl. , vol.6 , pp. 25-37
    • Benzi, M.1    Dayar, T.2
  • 8
    • 0008398985 scopus 로고
    • A parallel block projection method of the Cimmino type for finite Markov chains
    • ed. W. J. Stewart Dordrecht, Kluwer Academic
    • Benzi, M., F. Sgallari, and G. Spaletta. 1995. A parallel block projection method of the Cimmino type for finite Markov chains. In Computations with Markov chains, ed. W. J. Stewart, 65-80. Dordrecht, Kluwer Academic.
    • (1995) Computations with Markov Chains , pp. 65-80
    • Benzi, M.1    Sgallari, F.2    Spaletta, G.3
  • 9
    • 0036533049 scopus 로고    scopus 로고
    • A parallel solver for large-scale Markov chains
    • DOI 10.1016/S0168-9274(01)00116-7, PII S0168927401001167
    • Benzi, M., and M. Tuma. 2002. A parallel solver for large-scale Markov chains. Appl. Numer. Math., 41, 135-153. (Pubitemid 34154709)
    • (2002) Applied Numerical Mathematics , vol.41 , Issue.1 , pp. 135-153
    • Benzi, M.1    Tuma, M.2
  • 10
    • 84865209551 scopus 로고
    • Parallel tensor methods for nonlinear equations and nonlinear least squares
    • Bouaricha, A., and R. B. Schnabel. 1993. Parallel tensor methods for nonlinear equations and nonlinear least squares. PPSC, 639-643.
    • (1993) PPSC , pp. 639-643
    • Bouaricha, A.1    Schnabel, R.B.2
  • 11
    • 33746815709 scopus 로고    scopus 로고
    • Convergence properties of some block Krylov subspace methods for multiple linear systems
    • DOI 10.1016/j.cam.2005.09.017, PII S0377042705006011
    • Bouyouli, R., K. Jbilou, R. Sadaka, and H. Sadok. 2006. Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math., 196, 498-511. (Pubitemid 44177514)
    • (2006) Journal of Computational and Applied Mathematics , vol.196 , Issue.2 , pp. 498-511
    • Bouyouli, R.1    Jbilou, K.2    Sadaka, R.3    Sadok, H.4
  • 12
    • 33645560014 scopus 로고    scopus 로고
    • Parallel Markov Chain Monte Carlo simulation by pre-fetching
    • DOI 10.1198/106186006X100579
    • Brockwell, A. 2006. Parallel Markov chain Monte Carlo simulation by prefetching. J. Comput. Graphical Stati., 15, 246-261. (Pubitemid 43514420)
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , Issue.1 , pp. 246-261
    • Brockwell, A.E.1
  • 17
    • 33745014177 scopus 로고    scopus 로고
    • Parallel computation of high-dimensional Robust correlation and covariance matrices
    • DOI 10.1007/s00453-006-1219-9
    • Gliwice, Jacek Skalmierski Computer Studio. Chilson, J., R. Ng, A. Wagner, and R. Zamar. 2006. Parallel computation of high-dimensional robust correlation and covariance matrices. Algorithmica, 45, 403-431. (Pubitemid 43876797)
    • (2006) Algorithmica (New York) , vol.45 , Issue.3 , pp. 403-431
    • Chilson, J.1    Ng, R.2    Wagner, A.3    Zamar, R.4
  • 18
    • 6044263672 scopus 로고
    • A parallel nonlinear least-squares solver: Theoretical analysis and numerical results
    • Coleman, T. F., and P. E. Plassmann. 1992. A parallel nonlinear least-squares solver: Theoretical analysis and numerical results. SIAM J. Sci. Stat. Comput., 13, 771-793.
    • (1992) SIAM J. Sci. Stat. Comput. , vol.13 , pp. 771-793
    • Coleman, T.F.1    Plassmann, P.E.2
  • 19
    • 22544460444 scopus 로고    scopus 로고
    • Multiprocess parallel antithetic coupling for backward and forward Markov chain Monte Carlo
    • DOI 10.1214/009053604000001075
    • Craiu, R. V., and X. L. Meng. 2005. Multi-process parallel antithetic coupling for forward and backward Markov chain Monte Carlo. Ann. Stat., 33, 661-697. (Pubitemid 41053719)
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 661-697
    • Craiu, R.V.1    Meng, X.-L.2
  • 20
    • 74049163249 scopus 로고    scopus 로고
    • Learn from thy neighbor: Parallel-chain and regional adaptive MCMC
    • Craiu, R. V., J. S. Rosenthal, and C. Yang. 2009. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. J. Am. Stat. Associ., 104, 1454-1466.
    • (2009) J. Am. Stat. Associ. , vol.104 , pp. 1454-1466
    • Craiu, R.V.1    Rosenthal, J.S.2    Yang, C.3
  • 21
    • 27744468173 scopus 로고    scopus 로고
    • User-friendly parallel computations with econometric examples
    • DOI 10.1007/s10614-005-6868-2
    • Creel, M. 2005. User-friendly parallel computations with econometric examples. Comput. Econ., 26(2), 107-128. (Pubitemid 41631015)
    • (2005) Computational Economics , vol.26 , Issue.2 , pp. 107-128
    • Creel, M.1
  • 22
    • 54049116320 scopus 로고    scopus 로고
    • Multi-core CPUs, clusters, and grid computing: A tutorial
    • Creel,M., andW. L. Goffe. 2008. Multi-core CPUs, clusters, and grid computing: A tutorial. Comput. Econom., 32(4), 353-382.
    • (2008) Comput. Econom. , vol.32 , Issue.4 , pp. 353-382
    • Creel, M.1    Goffe, W.L.2
  • 25
    • 0343586025 scopus 로고    scopus 로고
    • A parallel data-clustering algorithm for distributed memory multiprocessors
    • ed. M. J. Zaki and C. T. Ho New York, Springer-Verlag.
    • Dhillon, I. S., and D. S. Modha. 2000. A parallel data-clustering algorithm for distributed memory multiprocessors. In Large-scale parallel data mining, Lecture notes in artificial intelligence, ed. M. J. Zaki and C. T. Ho, vol. 1759, 245-260. New York, Springer-Verlag.
    • (2000) Large-scale Parallel Data Mining, Lecture Notes in Artificial Intelligence , vol.1759 , pp. 245-260
    • Dhillon, I.S.1    Modha, D.S.2
  • 26
    • 2942559428 scopus 로고    scopus 로고
    • Distributed numerical markov chain analysis
    • Recent Advances in Parallel Virtual Machine and Message Passing Interface
    • Fischer, M., and P. Kemper. 2001. Distributed numerical Markov chain analysis. In Proc. 8th Euro PVM/MPI, vol. 2131 of LNCS, ed. Y. Cotronis and J. Dongarra, 272-279. (Pubitemid 33348555)
    • (2001) Lecture Notes in Computer Science , Issue.2131 , pp. 272-279
    • Fischer, M.1    Kemper, P.2
  • 27
    • 85059361617 scopus 로고    scopus 로고
    • Implementing markov chain monte carlo: Estimating with confidence
    • ed. S. Brooks, A. Gelman, G. Jones, and X. Meng. Boca Raton, FL, Chapman and Hall/CRC Press
    • Santorini, Greece. Flegal, J. M., and G. L. Jones. 2010. Implementing Markov chain Monte Carlo: Estimating with confidence. In Handbook of Markov chain Monte Carlo, ed. S. Brooks, A. Gelman, G. Jones, and X. Meng., p. 175-197, Boca Raton, FL, Chapman and Hall/CRC Press.
    • (2010) Handbook of Markov Chain Monte Carlo , pp. 175-197
    • Santorini, G.1    Flegal, J.M.2    Jones, G.L.3
  • 28
    • 84938166141 scopus 로고
    • Very high-speed computing systems
    • Flynn, M. J. 1966. Very high-speed computing systems. Proc. IEEE, 54, 1901-1909.
    • (1966) Proc. IEEE , vol.54 , pp. 1901-1909
    • Flynn, M.J.1
  • 29
    • 0015401565 scopus 로고
    • Some computer organizations and their effectiveness
    • Flynn, M. J. 1972. Some computer organizations and their effectiveness. IEEE Trans. Computers, C-21, 948-960.
    • (1972) IEEE Trans. Computers , vol.C-21 , pp. 948-960
    • Flynn, M.J.1
  • 30
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statis. Sci., 7, 457-511.
    • (1992) Statis. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 33
    • 54949143606 scopus 로고    scopus 로고
    • Schwarz methods for quasi-likelihood in generalized linear models
    • Guo, G. 2008. Schwarz methods for quasi-likelihood in generalized linear models. Commun. Stat. Simul Comput., 37, 2027-2036.
    • (2008) Commun. Stat. Simul Comput. , vol.37 , pp. 2027-2036
    • Guo, G.1
  • 34
    • 77952341416 scopus 로고    scopus 로고
    • Schwarz method for penalized quasi-likelihood in generalized additive models
    • Guo, G., and S. Lin. 2010. Schwarz method for penalized quasi-likelihood in generalized additive models. Commun. Statist. Theory Methods, 39, 1847-1854.
    • (2010) Commun. Statist. Theory Methods , vol.39 , pp. 1847-1854
    • Guo, G.1    Lin, S.2
  • 35
    • 84857447513 scopus 로고    scopus 로고
    • Schwarz methods for quasi stationary distributions of Markov chains
    • Guo, G., and W. Zhao. 2012. Schwarz methods for quasi stationary distributions of Markov chains. Calcolo, 49, 21-39.
    • (2012) Calcolo , vol.49 , pp. 21-39
    • Guo, G.1    Zhao, W.2
  • 36
    • 35048897012 scopus 로고    scopus 로고
    • Data decomposition for parallel k-means clustering
    • ed. R.Wyrzykowski, J. Dongarra,M. Paprzycki, and J.Wasniewski New York Springer
    • Gursoy, A. 2003. Data decomposition for parallel k-means clustering. In PPAM, Lecture Notes in Computer Science, vol. 319, ed. R.Wyrzykowski, J. Dongarra,M. Paprzycki, and J.Wasniewski, 241-248. New York, Springer.
    • (2003) PPAM, Lecture Notes in Computer Science , vol.319 , pp. 241-248
    • Gursoy, A.1
  • 37
    • 84865270035 scopus 로고
    • On practical experience with parallel processing of linear models
    • Havranek, T., and Z. Stratkos. 1989. On practical experience with parallel processing of linear models. Bull. Inter. Statis. Inst., 53, 105-117.
    • (1989) Bull. Inter. Statis. Inst. , vol.53 , pp. 105-117
    • Havranek, T.1    Stratkos, Z.2
  • 38
    • 48749088746 scopus 로고    scopus 로고
    • Nonparametric econometrics: The np package
    • Hayfield, T., and J. Racine. 2008. Nonparametric econometrics: The np package. J. Stat. Software, 27, 1-32.
    • (2008) J. Stat. Software , vol.27 , pp. 1-32
    • Hayfield, T.1    Racine, J.2
  • 39
    • 35148832155 scopus 로고    scopus 로고
    • Special issue on parallel processing and statistics
    • Kontoghiorghes, E. 1999. Special issue on parallel processing and statistics. Comput. Statist. Data Anal., 31, 373-516.
    • (1999) Comput. Statist. Data Anal. , vol.31 , pp. 373-516
    • Kontoghiorghes, E.1
  • 40
    • 13144262899 scopus 로고    scopus 로고
    • A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements)
    • Braunschweig, Germany, Technische Universitat Braunschweig
    • Keese, A. 2003. A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements). Informatikbericht 2003-6. Braunschweig, Germany, Technische Universitat Braunschweig.
    • (2003) Informatikbericht 2003-6
    • Keese, A.1
  • 41
    • 15844366703 scopus 로고    scopus 로고
    • Hierarchical parallel solution of stochastic systems
    • ed. K.-J. Bathe Amsterdam: Elsevier
    • Keese, A., and H. G. Matthies. 2003. Hierarchical parallel solution of stochastic systems. In Computational fluid and solid mechanics, vol. 2, ed. K.-J. Bathe, 2023-2025. Amsterdam: Elsevier.
    • (2003) Computational Fluid and Solid Mechanics , vol.2 , pp. 2023-2025
    • Keese, A.1    Matthies, H.G.2
  • 42
    • 34548669645 scopus 로고    scopus 로고
    • Parallel computation of stochastic groundwater flow
    • Germany
    • Keese, A., and H. G. Matthies. 2004. Parallel computation of stochastic groundwater flow. Proc. NIC Symposium. p. 399-408, Germany.
    • (2004) Proc. NIC Symposium. , pp. 399-408
    • Keese, A.1    Matthies, H.G.2
  • 43
    • 0003226727 scopus 로고    scopus 로고
    • Parallel algorithms for linear models: Numerical methods and estimation problems
    • Boston, MA Kluwer Academic Publishers
    • Kontoghiorghes, E. 2000. Parallel algorithms for linear models: Numerical methods and estimation problems, Advances in computational economics, vol. 15, Boston, MA, Kluwer Academic Publishers.
    • (2000) Advances in Computational Economics , vol.15
    • Kontoghiorghes, E.1
  • 46
    • 78751703946 scopus 로고    scopus 로고
    • On the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo methods
    • Lee, A., C. Yau, M. Giles, A. Doucet, and C. Holmes. 2010. On the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo methods. J. Comp. Graph. Stat., 19(4), 769-789.
    • (2010) J. Comp. Graph. Stat. , vol.19 , Issue.4 , pp. 769-789
    • Lee, A.1    Yau, C.2    Giles, M.3    Doucet, A.4    Holmes, C.5
  • 48
    • 72349095548 scopus 로고    scopus 로고
    • Parallel computation of kernel density estimates classifiers and their ensembles
    • Communication and Control Technologies, Orlando, FL
    • Lozano, E., and E. Acuña. 2003. Parallel computation of kernel density estimates classifiers and their ensembles. Proc. International Conference on Computer, Communication and Control Technologies, Orlando, FL.
    • (2003) Proc. International Conference on Computer
    • Lozano, E.1    Acuña, E.2
  • 49
    • 38349028884 scopus 로고    scopus 로고
    • Parallel computing of kernel density estimates with MPI
    • Lukasik, S. 2007. Parallel computing of kernel density estimates with MPI. Lecture Notes Computer Sci., 4489, 726-734.
    • (2007) Lecture Notes Computer Sci. , vol.4489 , pp. 726-734
    • Lukasik, S.1
  • 50
    • 84865267146 scopus 로고    scopus 로고
    • Fast implementation of the FRAME algorithm using a GPU Gibbs sampler
    • Johannesburg, South Africa
    • Lubinsky, B., and F. Nicolls. 2011. Fast implementation of the FRAME algorithm using a GPU Gibbs sampler. PRASA2011, Johannesburg, South Africa.
    • (2011) PRASA2011
    • Lubinsky, B.1    Nicolls, F.2
  • 51
    • 2942615438 scopus 로고    scopus 로고
    • Algebraic Schwarz methods for the numerical solution of Markov chains
    • Marek, I., and D. B. Szyld. 2004. Algebraic Schwarz methods for the numerical solution of Markov chains. Linear Algebra Appl., 386, 67-81.
    • (2004) Linear Algebra Appl. , vol.386 , pp. 67-81
    • Marek, I.1    Szyld, D.B.2
  • 54
    • 78651285211 scopus 로고    scopus 로고
    • Speeding up parallel tempering simulations
    • Hasenbusch, M., and S. Schaefer. 2010. Speeding up parallel tempering simulations. Phys. Rev., E82, 046707.
    • (2010) Phys. Rev. , vol.E82 , pp. 046707
    • Hasenbusch, M.1    Schaefer, S.2
  • 55
    • 80051584618 scopus 로고    scopus 로고
    • GPU-accelerated and parallelized ELM ensembles for large-scale regression
    • Heeswijk, M., Y. Miche, E. Oja, and A. Lendasse. 2011. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 74(16), 2430-2437.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2430-2437
    • Heeswijk, M.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 56
    • 0033334550 scopus 로고    scopus 로고
    • A parallel solver for generalized additive models
    • Hegland, M., I. McIntosh, and B. A. Turlach. 1999. A parallel solver for generalized additive models. Comput. Stat. Data Anal., 31(4), 377-396.
    • (1999) Comput. Stat. Data Anal. , vol.31 , Issue.4 , pp. 377-396
    • Hegland, M.1    McIntosh, I.2    Turlach, B.A.3
  • 57
    • 84856932694 scopus 로고    scopus 로고
    • Highly parameterized k-means clustering on FPGAs: Comparative results with GPPs and GPUs
    • Cancun, Mexico
    • Hussain, H. M., K. Benkrid, A. T. Erdogan, and H. Seker. 2011. Highly parameterized k-means clustering on FPGAs: Comparative results with GPPs and GPUs. Proc. ReConFig (2011), Cancun, Mexico.
    • (2011) Proc. ReConFig (2011)
    • Hussain, H.M.1    Benkrid, K.2    Erdogan, A.T.3    Seker, H.4
  • 58
    • 0035501906 scopus 로고    scopus 로고
    • Parallel implementation of the TRANSIMS microsimulation
    • Nagel, K., and M. Rickert. 2001. Parallel implementation of the TRANSIMS microsimulation. Parallel Comput., 27, 1611-1639.
    • (2001) Parallel Comput. , vol.27 , pp. 1611-1639
    • Nagel, K.1    Rickert, M.2
  • 59
    • 84865265912 scopus 로고    scopus 로고
    • Parallel computing techniques
    • ed. J. E. Gentle, W. Hadle, Y. Mori Berlin, Germany, Springer
    • Nakano, J. 2004. Parallel computing techniques. In Handbook of computational statistics, ed. J. E. Gentle, W. Hadle, Y. Mori, 237-266. Berlin, Germany, Springer.
    • (2004) Handbook of Computational Statistics , pp. 237-266
    • Nakano, J.1
  • 63
    • 84856462102 scopus 로고    scopus 로고
    • Fast GPU-based locality sensitive hashing for k-nearest neighbor computation
    • Pan, J., and D. Manocha. 2011. Fast GPU-based locality sensitive hashing for k-nearest neighbor computation. GISACM (2011), 211-220.
    • (2011) GISACM , vol.2011 , pp. 211-220
    • Pan, J.1    Manocha, D.2
  • 65
    • 84863018741 scopus 로고    scopus 로고
    • Option pricing on the GPU with backward stochastic differential equation
    • Fourth International Symposium on Parallel Architectures, Algorithms and Programming
    • Peng, Y., B. Gong, H. Liu, and B. Dai. 2011. Option pricing on the GPU with backward stochastic differential equation. PAAP, 19-23.Fourth International Symposium on Parallel Architectures, Algorithms and Programming.
    • (2011) PAAP , pp. 19-23
    • Peng, Y.1    Gong, B.2    Liu, H.3    Dai, B.4
  • 66
  • 67
    • 79953294551 scopus 로고    scopus 로고
    • GPU-computing in econophysics and statistical physics
    • Preis, T. 2011. GPU-computing in econophysics and statistical physics. EPJ-Special Topics, 194, 87-119.
    • (2011) EPJ-Special Topics , vol.194 , pp. 87-119
    • Preis, T.1
  • 68
    • 0037189972 scopus 로고
    • Parallel distributed kernel estimation
    • Racine, J. 1995. Parallel distributed kernel estimation. Comput. Stat. Data Anal., 40, 293-302.
    • (1995) Comput. Stat. Data Anal. , vol.40 , pp. 293-302
    • Racine, J.1
  • 69
    • 33845401010 scopus 로고    scopus 로고
    • Testing the significance of categorical predictor variables in nonparametric regression models
    • DOI 10.1080/07474930600972590, PII N51J080L03191808
    • Racine, J., J. Hart, and Q. Li. 2006. Testing the significance of categorical predictor variables in nonparametric regression models. Econometric Rev., 25, 523-544. (Pubitemid 44905378)
    • (2006) Econometric Reviews , vol.25 , Issue.4 , pp. 523-544
    • Racine, J.S.1    Hart, J.2    Li, Q.3
  • 70
    • 0032395761 scopus 로고    scopus 로고
    • A parallel multisplitting solution of the least squares problem
    • Renaut, R. A. 1998. A parallel multisplitting solution of the least squares problem. Numer. Linear Algebra Appl., 5, 11-31. (Pubitemid 128475830)
    • (1998) Numerical Linear Algebra with Applications , vol.5 , Issue.1 , pp. 11-31
    • Renaut, R.A.1
  • 71
  • 73
  • 74
    • 84865232762 scopus 로고    scopus 로고
    • Domain decomposition of stochastic PDEs and its parallel
    • Sarkar, A., N. Benabbou, and R. Ghanem. 2006. Domain decomposition of stochastic PDEs and its parallel. HPCS 2006, 14-17.
    • (2006) HPCS , vol.2006 , pp. 14-17
    • Sarkar, A.1    Benabbou, N.2    Ghanem, R.3
  • 75
    • 79952965418 scopus 로고    scopus 로고
    • Parallel computing for biological data
    • LMU Munchen, Fakultat fur Mathematik, Informatik und Statistik, Munich, Germany
    • Schmidberger, M. 2009. Parallel computing for biological data. Dissertation, LMU Munchen, Fakultat fur Mathematik, Informatik und Statistik, Munich, Germany.
    • (2009) Dissertation
    • Schmidberger, M.1
  • 77
    • 33846572465 scopus 로고    scopus 로고
    • Parallel exact sampling and evaluation of Gaussian Markov random fields
    • DOI 10.1016/j.csda.2006.01.013, PII S0167947306000181
    • Steinsland, I. 2007. Parallel exact sampling and evaluation of Gaussian Markov random fields. Comput. Stat. Data Anal., 51, 2969-2981. (Pubitemid 46186539)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.6 , pp. 2969-2981
    • Steinsland, I.1
  • 78
    • 34548073680 scopus 로고    scopus 로고
    • Performance modeling and Markov chains
    • ed. M. Bernardo and J. Hillston SFM 2007, LNCS 4486. New York Springer
    • Stewart, W. J. 2007. Performance modeling and Markov chains. In Formal methods for performance evaluation, ed. M. Bernardo and J. Hillston, 1-33. SFM 2007, LNCS 4486. New York, Springer.
    • (2007) Formal Methods for Performance Evaluation , pp. 1-33
    • Stewart, W.J.1
  • 79
    • 77955275495 scopus 로고    scopus 로고
    • Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach
    • Strid, I. 2010. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Comput. Stat. Data Anal., 54, 2814-2835.
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 2814-2835
    • Strid, I.1
  • 80
    • 77952417810 scopus 로고    scopus 로고
    • Domain decomposition of stochastic PDEs: A novel preconditioner and its parallel performance
    • ed. D. Mewhort, N. Cann, G. Slater, and T. Naughton New York Springer
    • Subber, W. and A. Sarkar. 2010. Domain decomposition of stochastic PDEs: A novel preconditioner and its parallel performance. In High performance computing systems and applications, ed. D. Mewhort, N. Cann, G. Slater, and T. Naughton, 251-268. New York, Springer.
    • (2010) High Performance Computing Systems and Applications , pp. 251-268
    • Subber, W.1    Sarkar, A.2
  • 81
    • 77955516707 scopus 로고    scopus 로고
    • Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures
    • Suchard, M. A., Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West. 2010. Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures. J. Comput. Graph. Stat., 19(2), 419-438.
    • (2010) J. Comput. Graph. Stat. , vol.19 , Issue.2 , pp. 419-438
    • Suchard, M.A.1    Wang, Q.2    Chan, C.3    Frelinger, J.4    Cron, A.5    West, M.6
  • 85
    • 34547139358 scopus 로고    scopus 로고
    • Optimized parallel tempering simulations of proteins
    • Trebst, S., M. Troyer, and U. Hansmann. 2006. Optimized parallel tempering simulations of proteins. J. Chem. Phys., 124,174903.
    • (2006) J. Chem. Phys. , vol.124 , pp. 174903
    • Trebst, S.1    Troyer, M.2    Hansmann, U.3
  • 88
    • 3843084997 scopus 로고    scopus 로고
    • Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models
    • DOI 10.1023/B:STCO.0000035299.51541.5e
    • Whiley, M. and S. P.Wilson. 2004. Parallel algorithms forMarkov chain Monte Carlo in latent spatial Gaussian models. Stat. Comput., 14, 171-179. (Pubitemid 39046708)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 171-179
    • Whiley, M.1    Wilson, S.P.2
  • 89
    • 85026233840 scopus 로고    scopus 로고
    • Parallel Bayesian computation
    • ed. E. J. Kontoghiorghes Boca Raton, FL, Chapman and Hall
    • Wilkinson, D. 2006. Parallel Bayesian computation. In Handbook of parallel computing and statistics, ed. E. J. Kontoghiorghes, 477-508.Boca Raton, FL, Chapman and Hall.
    • (2006) Handbook of Parallel Computing and Statistics , pp. 477-508
    • Wilkinson, D.1
  • 90
    • 0037408312 scopus 로고    scopus 로고
    • Modeling uncertainty in flow simulations via generalized polynomial chaos
    • DOI 10.1016/S0021-9991(03)00092-5
    • Xiu, D., and G. E. Karniadakis. 2003. Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys., 187, 137-167 (Pubitemid 36515575)
    • (2003) Journal of Computational Physics , vol.187 , Issue.1 , pp. 137-167
    • Xiu, D.1    Karniadakis, G.E.2
  • 91
    • 0042007208 scopus 로고
    • Parallelizing multiple linear regression for speed and redundancy: An empirical study
    • Xu, M., E. Wegman, and J. Miller. 1991. Parallelizing multiple linear regression for speed and redundancy: An empirical study. J. Stat Comput. Simulation, 39, 205-214.
    • (1991) J. Stat Comput. Simulation , Issue.39 , pp. 205-214
    • Xu, M.1    Wegman, E.2    Miller, J.3
  • 92
    • 34548569027 scopus 로고    scopus 로고
    • Parallelizing MCMC for Bayesian spatiotemporal geostatistical models
    • Yan, J., M. K. Cowles, S. Wang, and M. P. Armstrong. 2007. Parallelizing MCMC for Bayesian spatiotemporal geostatistical models. Stat. Comput., 17, 323-335.
    • (2007) Stat. Comput. , vol.17 , pp. 323-335
    • Yan, J.1    Cowles, M.K.2    Wang, S.3    Armstrong, M.P.4
  • 95
    • 27544461140 scopus 로고    scopus 로고
    • A wavefront parallelisation of CTMC solution using MTBDDs
    • IEEE Computer Society Press, Yokohama, Japan
    • Zhang, Y., D. Parker, and M. Kwiatkowska. 2005. A wavefront parallelisation of CTMC solution using MTBDDs. In DSN'05, 732-742. IEEE Computer Society Press, Yokohama, Japan.
    • (2005) DSN'05 , pp. 732-742
    • Zhang, Y.1    Parker, D.2    Kwiatkowska, M.3
  • 96
    • 78751637391 scopus 로고    scopus 로고
    • Graphics processing units and high-dimensional optimization
    • Zhou, H., K. Lange, and M. A. Suchard. 2010. Graphics processing units and high-dimensional optimization. Stat. Sci., 25(3), 311-324.
    • (2010) Stat. Sci. , vol.25 , Issue.3 , pp. 311-324
    • Zhou, H.1    Lange, K.2    Suchard, M.A.3
  • 97
    • 84865276027 scopus 로고    scopus 로고
    • GPU-accelerated differential evolutionary Markov chain Monte Carlo method for multi-objective optimization over continuous space
    • Washington DC
    • Zhu, W., and Y. Li. 2010. GPU-accelerated differential evolutionary Markov chain Monte Carlo method for multi-objective optimization over continuous space. Proc. 7th IEEE ICAC-BADS, Washington, DC.
    • (2010) Proc. 7th IEEE ICAC-BADS
    • Zhu, W.1    Li, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.