메뉴 건너뛰기




Volumn 4, Issue 2, 2012, Pages 185-193

A Linear Prediction Rule Based on Ensemble Classifiers for Non-Genotoxic Carcinogenicity

Author keywords

Classification; Gene signature; Linear discriminant analysis (LDA); Microarray; Toxicogenomics

Indexed keywords

ANILINE; ATENOLOL; CARBAMAZEPINE; CHLORPROMAZINE; CYPROTERONE ACETATE; DANTROLENE; DAPSONE; DIELDRIN; FELBAMATE; FUROSEMIDE; GABAPENTIN; ISONIAZID; LANSOPRAZOLE; METHAPYRILENE; PHENOBARBITAL; PIPERONYL BUTOXIDE; RALOXIFENE; RIFAMPICIN; SIMVASTATIN; SULFAMETHOXAZOLE; TOLUENE DERIVATIVE; VALPROIC ACID;

EID: 84865059742     PISSN: None     EISSN: 19466315     Source Type: Journal    
DOI: 10.1198/sbr.2011.10049     Document Type: Article
Times cited : (4)

References (31)
  • 3
    • 0037076322 scopus 로고    scopus 로고
    • Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data
    • Ambroise, C. and McLachlan, G. J. 2002. "Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data". Proceedings of the National Academy of Sciences, 99(10): 6562-6566.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 5
    • 0023328602 scopus 로고
    • Ranking Possible Carcinogenic Hazards
    • Ames, B. N., Magaw, R. and Gold, L. S. 1987. "Ranking Possible Carcinogenic Hazards". Science, 236: 271-280.
    • (1987) Science , vol.236 , pp. 271-280
    • Ames, B.N.1    Magaw, R.2    Gold, L.S.3
  • 6
    • 0000973407 scopus 로고
    • Definitive Relationships Among Chemical Structure, Carcinogenicity and Mutagenicity for 301 Chemicals Tested by the U.S. NTP
    • Ashby, J. and Tennant, R. W. 1991. "Definitive Relationships Among Chemical Structure, Carcinogenicity and Mutagenicity for 301 Chemicals Tested by the U.S. NTP". Mutation Research, 257: 229-306.
    • (1991) Mutation Research , vol.257 , pp. 229-306
    • Ashby, J.1    Tennant, R.W.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. "Random Forests". Machine Learning, 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 47249146036 scopus 로고    scopus 로고
    • Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment Washington, DC: The National Academies
    • Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment. 2007. Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment, Washington, DC: The National Academies.
    • (2007) Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment
  • 9
    • 33646858444 scopus 로고    scopus 로고
    • U.S. Department of Health and Human Services, Food and Drug Administration
    • Critical Path Opportunities Report available online at
    • Critical Path Opportunities Report. 2006. "U.S. Department of Health and Human Services, Food and Drug Administration". available online at http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/UCM077254.pdf
    • (2006)
  • 10
    • 30644464444 scopus 로고    scopus 로고
    • Gene Selection and Classification of Microarray Data Using Random Forest
    • Available online at
    • Diaz-Uriarte, R. and Alvarez de Andres, S. 2006. "Gene Selection and Classification of Microarray Data Using Random Forest". Bioinformatics, 7: 1-13. Available online athttp://www.biomedcentral.com/1471-2105/7/3
    • (2006) Bioinformatics , vol.7 , pp. 1-13
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 12
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
    • Dudoit, S., Fridlyand, J. and Speed, T. P. 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data". Journal of the American Statistical Association, 97: 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 13
    • 84865054742 scopus 로고    scopus 로고
    • FDA Announces Partnership with Critical Path Institute to Conduct Essential Research to Spur Medical Innovation
    • FDA News P05-101 available online at
    • FDA News P05-101. 2005. "FDA Announces Partnership with Critical Path Institute to Conduct Essential Research to Spur Medical Innovation". available online at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2005/ucm108532.htm
    • (2005)
  • 14
    • 34547881497 scopus 로고    scopus 로고
    • A Gene Expression Biomarker Provides Early Prediction and Mechanistic Assessment of Hepatic Tumor Induction by Non-genotoxic Chemicals
    • Fielden, M. R., Brennan, R. J. and Gollub, J. 2007. "A Gene Expression Biomarker Provides Early Prediction and Mechanistic Assessment of Hepatic Tumor Induction by Non-genotoxic Chemicals". Toxicological Sciences, 99: 90-100.
    • (2007) Toxicological Sciences , vol.99 , pp. 90-100
    • Fielden, M.R.1    Brennan, R.J.2    Gollub, J.3
  • 15
    • 33745886270 scopus 로고    scopus 로고
    • Classifier Technology and the Illusion of Progress
    • Hand, D. J. 2006. "Classifier Technology and the Illusion of Progress". Statistical Science, 21: 1-14.
    • (2006) Statistical Science , vol.21 , pp. 1-14
    • Hand, D.J.1
  • 17
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide Microarray for Prediction of Early Intrahepatic Recurrence of Hepatocellular Carcinoma After Curative Resection
    • Iizuka, N., Oka, M.Yamada-Okabe, H. 2003. "Oligonucleotide Microarray for Prediction of Early Intrahepatic Recurrence of Hepatocellular Carcinoma After Curative Resection". Lancet, 361: 923-929.
    • (2003) Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1    Oka, M.2    Yamada-Okabe, H.3
  • 19
    • 10444280144 scopus 로고    scopus 로고
    • An Extensive Evaluation of Recent Classification Tools Applied to Microarray Data
    • Lee, J. W., Lee, J. B., Park, M. and Song, S.H. 2005. "An Extensive Evaluation of Recent Classification Tools Applied to Microarray Data". Computational Statistics and Data Analysis, 48: 869-885.
    • (2005) Computational Statistics and Data Analysis , vol.48 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 20
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of Cancer Outcome with Microarrays: A Multiple Random Validation Strategy
    • Michiels, S., Koscielny, S. and Hill, C. 2005. "Prediction of Cancer Outcome with Microarrays: A Multiple Random Validation Strategy". Lancet, 365: 488-492.
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 21
    • 33845462135 scopus 로고    scopus 로고
    • Predictive Toxicogenomic Approaches Reveal Underlying Molecular Mechanisms of Nongenotoxic Carcinogenicity
    • Nie, A. Y.McMillian, M. 2006. "Predictive Toxicogenomic Approaches Reveal Underlying Molecular Mechanisms of Nongenotoxic Carcinogenicity". Molecular Carcinogenesis, 45: 914-933.
    • (2006) Molecular Carcinogenesis , vol.45 , pp. 914-933
    • Nie, A.Y.1    McMillian, M.2
  • 22
    • 40949144403 scopus 로고    scopus 로고
    • Prediction of Non-Genotoxic Carcinogenesis in Rats Using Changes in Gene Expression Following Acute Dosing
    • Nioi, P., Pardo, I.D. R., Sherratt, P. J. and Snyder, R. D. 2008. "Prediction of Non-Genotoxic Carcinogenesis in Rats Using Changes in Gene Expression Following Acute Dosing". Chemico-Biological Interactions, 172: 206-215.
    • (2008) Chemico-Biological Interactions , vol.172 , pp. 206-215
    • Nioi, P.1    Pardo, I.D.R.2    Sherratt, P.J.3    Snyder, R.D.4
  • 24
    • 1942438016 scopus 로고    scopus 로고
    • Rules of Evidence for Cancer Molecular Marker Discovery and Validation
    • Ransohoff, D. F. 2004. "Rules of Evidence for Cancer Molecular Marker Discovery and Validation". Nature Reviews: Cancer, 4: 309-314.
    • (2004) Nature Reviews: Cancer , vol.4 , pp. 309-314
    • Ransohoff, D.F.1
  • 25
    • 0345327592 scopus 로고    scopus 로고
    • A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression
    • Shevade, S. K. and Keerthi, S. S. 2003. "A Simple and Efficient Algorithm for Gene Selection Using Sparse Logistic Regression". Bioinformatics, 19: 2246-2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 27
    • 0035012857 scopus 로고    scopus 로고
    • A Review of the Genotoxicity of Marketed Pharmaceuticals
    • Snyder, R. D. and Green, J. W. 2001. "A Review of the Genotoxicity of Marketed Pharmaceuticals". Mutation Research, 488: 151-169.
    • (2001) Mutation Research , vol.488 , pp. 151-169
    • Snyder, R.D.1    Green, J.W.2
  • 29
    • 18244409687 scopus 로고    scopus 로고
    • Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer
    • vant't Veer, L. J., Dai, H.van de Vijver, M. J. 2002. "Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer". Nature, 415: 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • vant't Veer, L.J.1    Dai, H.2    van de Vijver, M.J.3
  • 30
    • 0037351102 scopus 로고    scopus 로고
    • Azole Fungicides Affect Mammalian Steroidogenesis by Inhibiting Sterol 14α-Demethylase and Aromatase
    • Zarn, J. A., Brüschweiler, B. J. and Schlatter, J. R. 2003. "Azole Fungicides Affect Mammalian Steroidogenesis by Inhibiting Sterol 14α-Demethylase and Aromatase". Environmental Health Perspectives, 111: 255-261.
    • (2003) Environmental Health Perspectives , vol.111 , pp. 255-261
    • Zarn, J.A.1    Brüschweiler, B.J.2    Schlatter, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.