-
1
-
-
68649086910
-
Simultaneous analysis of Lasso and Dantzig selector
-
P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
-
(2009)
Annals of Statistics
, vol.37
, Issue.4
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.3
-
2
-
-
49949144765
-
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
-
L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200-217, 1967.
-
(1967)
USSR Computational Mathematics and Mathematical Physics
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
4
-
-
29144439194
-
Decoding by linear programming
-
DOI 10.1109/TIT.2005.858979
-
E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. on Information Theory, 51:4203-4215, 2005. (Pubitemid 41800353)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.J.1
Tao, T.2
-
5
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n (with discussion)
-
E. J. Candes and T. Tao. The dantzig selector: statistical estimation when p is much larger than n (with discussion). Annals of Statistics, 35:2313-2404, 2007.
-
(2007)
Annals of Statistics
, vol.35
, pp. 2313-2404
-
-
Candes, E.J.1
Tao, T.2
-
6
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
PII S1064827596304010
-
S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20:33-61, 1998. (Pubitemid 128689501)
-
(1998)
SIAM Journal of Scientific Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
7
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96:1348-1360, 2001. (Pubitemid 33695585)
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
8
-
-
31344454903
-
Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
-
DOI 10.3150/bj/1106314846
-
E. Greenshtein and Y. Ritov. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli, 10:971-988, 2004. (Pubitemid 44242744)
-
(2004)
Bernoulli
, vol.10
, Issue.6
, pp. 971-988
-
-
Greenshtein, E.1
Ritov, Y.2
-
9
-
-
51049096710
-
Adaptive lasso for sparse high-dimensional regression models
-
J. Huang, S. Ma, and C.-H. Zhang. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, 18:1603-1618, 2008.
-
(2008)
Statistica Sinica
, vol.18
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.2
Zhang, C.-H.3
-
10
-
-
26444617168
-
Variable selection using MM algorithms
-
DOI 10.1214/009053605000000200
-
D. R. Hunter and R. Li. Variable selection using mm algorithms. Annals of Statistics, 33:1617-1642, 2005. (Pubitemid 41423982)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1617-1642
-
-
Hunter, D.R.1
Li, R.2
-
11
-
-
72249100613
-
The dantzig selector and sparsity oracle inequalities
-
V. Koltchinskii. The dantzig selector and sparsity oracle inequalities. Bernoulli, 15:799-828, 2009.
-
(2009)
Bernoulli
, vol.15
, pp. 799-828
-
-
Koltchinskii, V.1
-
13
-
-
84897542602
-
Smoothing l1-penalized estimators for high-dimensional time-course data
-
L. Meier and P. B̈uhlmann. Smoothing l1-penalized estimators for high-dimensional time-course data. Electronic Journal of Statistics, 1:597-615, 2007.
-
(2007)
Electronic Journal of Statistics
, vol.1
, pp. 597-615
-
-
Meier, L.1
B̈uhlmann, P.2
-
14
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
DOI 10.1214/009053606000000281
-
N. Meinshausen and P. B̈uhlmann. High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 34:1436-1462, 2006. (Pubitemid 44231168)
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
15
-
-
65349193793
-
Lasso-type recovery of sparse representations for high-dimensional data
-
N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37:246-270, 2009.
-
(2009)
Annals of Statistics
, vol.37
, pp. 246-270
-
-
Meinshausen, N.1
Yu, B.2
-
16
-
-
80055054202
-
-
Technical Report arXiv: 1010.2731, arXiv
-
S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for highdimensional analysis of m-estimators with decomposable regularizer. Technical Report arXiv:1010.2731, arXiv, 2010.
-
(2010)
A Unified Framework for Highdimensional Analysis of M-Estimators with Decomposable Regularizer
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
18
-
-
81855189799
-
Model selection in gaussian graphical models: High-dimensional consistency of l1-regularized mle
-
P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. Model selection in gaussian graphical models: High-dimensional consistency of l1-regularized mle. In Advances in Neural Information Processing Systems (NIPS), volume 21, 2008.
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.21
-
-
Ravikumar, P.1
Wainwright, M.J.2
Raskutti, G.3
Yu, B.4
-
19
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covariance estimation. Electronic Journal of Statistics, 2:494-515, 2008.
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 494-515
-
-
Rothman, A.J.1
Bickel, P.J.2
Levina, E.3
Zhu, J.4
-
20
-
-
77955057877
-
L1-penalization for mixture regression models (with discussion)
-
N. Sẗadler, P. B̈uhlmann, and S. van de Geer. l1-penalization for mixture regression models (with discussion). Test, 19(2):209-285, 2010.
-
(2010)
Test
, vol.19
, Issue.2
, pp. 209-285
-
-
Sẗadler, N.1
B̈uhlmann, P.2
Van De Geer, S.3
-
23
-
-
79954994522
-
The solution path of the generalized lasso
-
R. Tibshirani and J. Taylor. The solution path of the generalized lasso. The Annals of Statistics, 39: 1335-1371, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, pp. 1335-1371
-
-
Tibshirani, R.1
Taylor, J.2
-
24
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
DOI 10.1109/TIT.2005.864420
-
J. A. Tropp. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory, 52:1030-1051, 2006. (Pubitemid 46444890)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
25
-
-
79551473604
-
-
Technical Report 140, ETH Zurich, Switzerland
-
S. van de Geer. The deterministic lasso. Technical Report 140, ETH Zurich, Switzerland, 2007.
-
(2007)
The Deterministic Lasso
-
-
Van De Geer, S.1
-
26
-
-
51049121146
-
High-dimensional generalized linear models and the lasso
-
S. van de Geer. High-dimensional generalized linear models and the lasso. Annals of Statistics, 36: 614-645, 2008.
-
(2008)
Annals of Statistics
, vol.36
, pp. 614-645
-
-
Van De Geer, S.1
-
27
-
-
77955054299
-
On the conditions used to prove oracle results for the lasso
-
S. van de Geer and P. B̈uhlmann. On the conditions used to prove oracle results for the lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
-
(2009)
Electronic Journal of Statistics
, vol.3
, pp. 1360-1392
-
-
Van De Geer, S.1
B̈uhlmann, P.2
-
28
-
-
65749083666
-
Sharp thresholds for noisy and high-dimensional recovery of sparsity using l1-constrained quadratic programming (lasso)
-
M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using l1-constrained quadratic programming (lasso). IEEE Transactions on Information Theory, 55: 2183-2202, 2009.
-
(2009)
IEEE Transactions on Information Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.J.1
-
29
-
-
79551503968
-
Rate minimaxity of the lasso and dantzig selector for the lq loss in lr balls
-
F. Ye and C.-H. Zhang. Rate minimaxity of the lasso and dantzig selector for the lq loss in lr balls. Journal of Machine Learning Research, 11:3481-3502, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3481-3502
-
-
Ye, F.1
Zhang, C.-H.2
-
31
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38:894-942, 2010a.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 894-942
-
-
Zhang, C.-H.1
-
32
-
-
50949096321
-
The sparsity and bias of the Lasso selection in high-dimensional linear regression
-
C.-H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.4
, pp. 1567-1594
-
-
Zhang, C.-H.1
Huang, J.2
-
33
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research, 11:1087-1107, 2010b.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1087-1107
-
-
Zhang, T.1
-
34
-
-
79959549699
-
Adaptive forward-backward greedy algorithm for learning sparse representations
-
T. Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE Transactions on Information Theory, 57:4689-4708, 2011a.
-
(2011)
IEEE Transactions on Information Theory
, vol.57
, pp. 4689-4708
-
-
Zhang, T.1
-
38
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models
-
H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36(4):1509-1533, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.4
, pp. 1509-1533
-
-
Zou, H.1
Li, R.2
|