메뉴 건너뛰기




Volumn 20, Issue 3, 2000, Pages 183-204

Model selection for a medical diagnostic decision support system: A breast cancer detection case

Author keywords

Decision support system; Model selection; Neural network; Self organizing map; Stacked generalization

Indexed keywords

DATABASE SYSTEMS; DECISION SUPPORT SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; ONCOLOGY; PHYSIOLOGICAL MODELS;

EID: 0034333656     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(00)00063-4     Document Type: Article
Times cited : (83)

References (58)
  • 1
    • 0029095797 scopus 로고
    • Breast cancer: Prediction with artificial neural network based on bi-rads standardized lexicon
    • Baker J.A., Kornguth P.J., Lo J.Y., Williford M.E., Floyd C.E. Breast cancer: prediction with artificial neural network based on bi-rads standardized lexicon. Radiology. 196:1995;817-822.
    • (1995) Radiology , vol.196 , pp. 817-822
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Williford, M.E.4    Floyd, C.E.5
  • 2
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: Improving the quality of breast biopsy recommendations
    • Baker J.A., Kornguth P.J., Lo J.Y., Floyd C.E. Artificial neural network: improving the quality of breast biopsy recommendations. Radiology. 198:1996;131-135.
    • (1996) Radiology , vol.198 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Floyd, C.E.4
  • 3
    • 0000254593 scopus 로고
    • Use of an artificial neural network for data analysis in clinical decision-making: The diagnosis of acute coronary occlusion
    • Baxt W.G. Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion. Neural Comput. 2:1990;480-489.
    • (1990) Neural Comput. , vol.2 , pp. 480-489
    • Baxt, W.G.1
  • 4
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt W.G. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann. Internal Med. 115:1991;843-848.
    • (1991) Ann. Internal Med. , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 5
    • 0028242397 scopus 로고
    • A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching
    • Baxt W.G. A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching. Med. Decis. Mak. 14:1994;217-222.
    • (1994) Med. Decis. Mak. , vol.14 , pp. 217-222
    • Baxt, W.G.1
  • 6
    • 0028299159 scopus 로고
    • Computer-assisted image classification: Use of neural networks in anatomic pathology
    • Becker R.L. Computer-assisted image classification: use of neural networks in anatomic pathology. Cancer Lett. 77:1994;111-117.
    • (1994) Cancer Lett. , vol.77 , pp. 111-117
    • Becker, R.L.1
  • 7
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • Bottaci L., Drew P.J., Hartley J.E., Hadfieldet M.B. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet. 350:1997;469-472.
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1    Drew, P.J.2    Hartley, J.E.3    Hadfieldet, M.B.4
  • 8
    • 0025590610 scopus 로고
    • A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders
    • Bounds D.G., Lloyd P.J., Mathew B.G. A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks. 3:1990;583-591.
    • (1990) Neural Networks , vol.3 , pp. 583-591
    • Bounds, D.G.1    Lloyd, P.J.2    Mathew, B.G.3
  • 9
    • 0030196364 scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Machine Learning. 24:1995;49-64.
    • (1995) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning. 26:1996;123-140.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0025756235 scopus 로고
    • Signal detectability: The use of ROC curves and their analyses
    • Centor R.M. Signal detectability: the use of ROC curves and their analyses. Med. Decis. Mak. 11:1991;102-106.
    • (1991) Med. Decis. Mak. , vol.11 , pp. 102-106
    • Centor, R.M.1
  • 12
    • 0028209213 scopus 로고
    • Hybrid lung nodule detection (HLND) system
    • Chiou Y.S.P., Lure Y.M.F. Hybrid lung nodule detection (HLND) system. Cancer Lett. 77:1994;119-126.
    • (1994) Cancer Lett. , vol.77 , pp. 119-126
    • Chiou, Y.S.P.1    Lure, Y.M.F.2
  • 15
    • 0000007667 scopus 로고    scopus 로고
    • Artificial neural networks improve diagnosis of acute myocardial infarction
    • Fricker J. Artificial neural networks improve diagnosis of acute myocardial infarction. Lancet. 350:1997;935.
    • (1997) Lancet , vol.350 , pp. 935
    • Fricker, J.1
  • 16
    • 0031833252 scopus 로고    scopus 로고
    • Neural network classification and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube
    • Gaetz M., Weinberg H., Rzempoluck E., Jantzen K.J. Neural network classification and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube. Cogn. Brain Res. 6:1998;335-346.
    • (1998) Cogn. Brain Res. , vol.6 , pp. 335-346
    • Gaetz, M.1    Weinberg, H.2    Rzempoluck, E.3    Jantzen, K.J.4
  • 21
    • 0031170936 scopus 로고    scopus 로고
    • Artificial neural network analysis of noisy visual field data in glaucoma
    • Henson D.B., Spenceley S.E., Bull D.R. Artificial neural network analysis of noisy visual field data in glaucoma. Artif. Intell. Med. 10:1997;99-113.
    • (1997) Artif. Intell. Med. , vol.10 , pp. 99-113
    • Henson, D.B.1    Spenceley, S.E.2    Bull, D.R.3
  • 22
    • 0025756234 scopus 로고
    • The area under the ROC curve and its competitors
    • Hilden J. The area under the ROC curve and its competitors. Med. Decis. Mak. 11:1991;95-101.
    • (1991) Med. Decis. Mak. , vol.11 , pp. 95-101
    • Hilden, J.1
  • 26
    • 0003195440 scopus 로고    scopus 로고
    • Computers beat doctors in interpreting ECGs
    • Josefson D. Computers beat doctors in interpreting ECGs. Br. Med. J. 315:1997;764-765.
    • (1997) Br. Med. J. , vol.315 , pp. 764-765
    • Josefson, D.1
  • 29
    • 0031281245 scopus 로고    scopus 로고
    • Application of autonomous neural network systems to medical pattern classification tasks
    • Lim C.P., Harrison R.F., Kennedy R.L. Application of autonomous neural network systems to medical pattern classification tasks. Artif. Intell. Med. 11:1997;215-239.
    • (1997) Artif. Intell. Med. , vol.11 , pp. 215-239
    • Lim, C.P.1    Harrison, R.F.2    Kennedy, R.L.3
  • 30
    • 0031260442 scopus 로고    scopus 로고
    • Recognition of patient anesthetic levels: Neural network systems, principal component analysis, and canonical discriminant variates
    • Linkensand D.A., Vefghi L. Recognition of patient anesthetic levels: neural network systems, principal component analysis, and canonical discriminant variates. Artif. Intell. Med. 11:1997;155-173.
    • (1997) Artif. Intell. Med. , vol.11 , pp. 155-173
    • Linkensand, D.A.1    Vefghi, L.2
  • 31
    • 0028296903 scopus 로고
    • How to improve a neural network for early detection of hepatic cancer
    • Maclin P.S., Dempsey J. How to improve a neural network for early detection of hepatic cancer. Cancer Lett. 77:1994;95-101.
    • (1994) Cancer Lett. , vol.77 , pp. 95-101
    • Maclin, P.S.1    Dempsey, J.2
  • 32
    • 0023767331 scopus 로고
    • Identifying prognostic factors in binary outcome data: An application using liver function tests and age to predict liver metastases
    • Makuch R.W., Rosenberg P.S. Identifying prognostic factors in binary outcome data: an application using liver function tests and age to predict liver metastases. Statist. Med. 7:1988;843-856.
    • (1988) Statist. Med. , vol.7 , pp. 843-856
    • Makuch, R.W.1    Rosenberg, P.S.2
  • 33
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian O.L., Street W.N., Wolberg W.H. Breast cancer diagnosis and prognosis via linear programming. Operations Res. 43(4):1995;570-577.
    • (1995) Operations Res. , vol.43 , Issue.4 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 34
    • 0028211443 scopus 로고
    • Computer-assisted cervical cancer screening using neural networks
    • Mango L.J. Computer-assisted cervical cancer screening using neural networks. Cancer Lett. 77:1994;155-162.
    • (1994) Cancer Lett. , vol.77 , pp. 155-162
    • Mango, L.J.1
  • 35
    • 0029993887 scopus 로고    scopus 로고
    • Reducing false negatives in clinical practice: The role of neural network technology
    • Mango L.J. Reducing false negatives in clinical practice: the role of neural network technology. Am. J. Obstet. Gynecol. 175(4):1996;1114-1119.
    • (1996) Am. J. Obstet. Gynecol. , vol.175 , Issue.4 , pp. 1114-1119
    • Mango, L.J.1
  • 36
    • 0033105476 scopus 로고    scopus 로고
    • A neural network approach to the diagnosis of morbidity outcomes in trauma care
    • Marble R.P., Healy J.C. A neural network approach to the diagnosis of morbidity outcomes in trauma care. Artif. Intell. Med. 15:1999;299-307.
    • (1999) Artif. Intell. Med. , vol.15 , pp. 299-307
    • Marble, R.P.1    Healy, J.C.2
  • 37
    • 0028367412 scopus 로고
    • Medical diagnostic decision support systems - Past, present, and future: A threaded bibliography and brief commentary
    • Miller R.A. Medical diagnostic decision support systemspast, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Informatics Assoc. 1(1):1994;8-27.
    • (1994) J. Am. Med. Informatics Assoc. , vol.1 , Issue.1 , pp. 8-27
    • Miller, R.A.1
  • 38
    • 0345698816 scopus 로고    scopus 로고
    • A general regression neural network analysis of prognostic markers in prostate cancer
    • Naguib R.N.G., Hamdy F.C. A general regression neural network analysis of prognostic markers in prostate cancer. Neurocomputing. 19:1998;145-150.
    • (1998) Neurocomputing , vol.19 , pp. 145-150
    • Naguib, R.N.G.1    Hamdy, F.C.2
  • 40
    • 0008289581 scopus 로고
    • A neural network that learns to interpret myocardial planar thallium scintigrams
    • Rosenberg C., Erel J., Atlan H. A neural network that learns to interpret myocardial planar thallium scintigrams. Neural Comput. 5:1993;492-502.
    • (1993) Neural Comput. , vol.5 , pp. 492-502
    • Rosenberg, C.1    Erel, J.2    Atlan, H.3
  • 41
    • 0031144423 scopus 로고    scopus 로고
    • Using neural networks to aid the diagnosis of breast implant rupture
    • Salchenberger L., Venta E.R., Venta L.A. Using neural networks to aid the diagnosis of breast implant rupture. Comput. Operations Res. 24(5):1997;435-444.
    • (1997) Comput. Operations Res. , vol.24 , Issue.5 , pp. 435-444
    • Salchenberger, L.1    Venta, E.R.2    Venta, L.A.3
  • 42
    • 0027406320 scopus 로고
    • Ulcer risk factors: Interactions between heliocobacter pylori infection, nonsteroidal use and age
    • Schubert T.T., Bologna S.D., Nensey Y., Schubert A., Mascha E.J., Ma C.K. Ulcer risk factors: interactions between heliocobacter pylori infection, nonsteroidal use and age. Am. J. Med. 94:1993;416-418.
    • (1993) Am. J. Med. , vol.94 , pp. 416-418
    • Schubert, T.T.1    Bologna, S.D.2    Nensey, Y.3    Schubert, A.4    Mascha, E.J.5    Ma, C.K.6
  • 43
  • 44
    • 0027729155 scopus 로고
    • A neural network approach to predicting admission decisions in a psychiatric emergency room
    • Somoza E., Somoza J.R. A neural network approach to predicting admission decisions in a psychiatric emergency room. Med. Decis. Mak. 13:1993;273-280.
    • (1993) Med. Decis. Mak. , vol.13 , pp. 273-280
    • Somoza, E.1    Somoza, J.R.2
  • 45
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D.F. A general regression neural network. Neural Networks. 2(6):1991;568-576.
    • (1991) Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 46
    • 0031178659 scopus 로고    scopus 로고
    • Using computer-based medical records to predict mortality risk for inner-city patients with reactive airways disease
    • Tierney W.H., Murray M.D., Gaskins D.L., Zhou X.-H. Using computer-based medical records to predict mortality risk for inner-city patients with reactive airways disease. J. Med. Informatics Assoc. 4:1997;313-321.
    • (1997) J. Med. Informatics Assoc. , vol.4 , pp. 313-321
    • Tierney, W.H.1    Murray, M.D.2    Gaskins, D.L.3    Zhou, X.-H.4
  • 48
    • 0027445437 scopus 로고
    • Acute pulmonary embolism: Artificial neural network approach for diagnosis
    • Tourassi G.D., Floyd C.E., Sostman H.D., Coleman R.E. Acute pulmonary embolism: artificial neural network approach for diagnosis. Radiology. 189:1993;555-558.
    • (1993) Radiology , vol.189 , pp. 555-558
    • Tourassi, G.D.1    Floyd, C.E.2    Sostman, H.D.3    Coleman, R.E.4
  • 49
    • 0033131710 scopus 로고    scopus 로고
    • Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network
    • Tsujji O., Freedman M.T., Mun S.K. Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network. Pattern Recogn. 32:1999;891-903.
    • (1999) Pattern Recogn. , vol.32 , pp. 891-903
    • Tsujji, O.1    Freedman, M.T.2    Mun, S.K.3
  • 50
    • 0031893485 scopus 로고    scopus 로고
    • Predicting mortality after coronary artery bypass surgery: What do artificial neural networks learn?
    • The Steering Committee of the Cardiac Care Network of Ontario
    • Tu JV, Weinstein MC, McNeil BJ, Naylor CD, The Steering Committee of the Cardiac Care Network of Ontario. Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn? Med Decis Mak 1998;18(2):229-35.
    • (1998) Med. Decis. Mak. , vol.18 , Issue.2 , pp. 229-235
    • Tu, J.V.1    Weinstein, M.C.2    McNeil, B.J.3    Naylor, C.D.4
  • 51
    • 0028219772 scopus 로고
    • Application of backpropagation neural networks to diagnosis of breast and ovarian cancer
    • Wilding P., Morgan M.A., Grygotis A.E., Shoffner M.A., Rosato E.F. Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. Cancer Lett. 77:1994;145-153.
    • (1994) Cancer Lett. , vol.77 , pp. 145-153
    • Wilding, P.1    Morgan, M.A.2    Grygotis, A.E.3    Shoffner, M.A.4    Rosato, E.F.5
  • 52
    • 0028935859 scopus 로고
    • Image analysis and machine learning applied to breast cancer diagnosis and prognosis
    • Wolberg W.H., Street W.N., Mangasarian O.L. Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Anal. Quant. Cytol. Histol. 17(2):1995;77-87.
    • (1995) Anal. Quant. Cytol. Histol. , vol.17 , Issue.2 , pp. 77-87
    • Wolberg, W.H.1    Street, W.N.2    Mangasarian, O.L.3
  • 53
    • 0029034426 scopus 로고
    • Computerized breast cancer diagnosis and prognosis from fine needle aspirates
    • Wolberg W.H., Street W.N., Heisey D.M., Mangasarian O.L. Computerized breast cancer diagnosis and prognosis from fine needle aspirates. Arch. Surgery. 130:1995;511-516.
    • (1995) Arch. Surgery , vol.130 , pp. 511-516
    • Wolberg, W.H.1    Street, W.N.2    Heisey, D.M.3    Mangasarian, O.L.4
  • 54
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks. 5:1992;241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 55
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu Y., Giger M.L., Doi K., Vyborny C.J., Schmidt R.A., Metz C.E. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology. 187:1993;81-87.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 56
    • 0032928495 scopus 로고    scopus 로고
    • Developing robust non-linear models through bootstrap aggregated neural networks
    • Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing. 25:1999;93-113.
    • (1999) Neurocomputing , vol.25 , pp. 93-113
    • Zhang, J.1
  • 57
    • 0032804290 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using bootstrap aggregated neural networks
    • Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Networks. 12:1999;927-938.
    • (1999) Neural Networks , vol.12 , pp. 927-938
    • Zhang, J.1
  • 58
    • 0031244962 scopus 로고    scopus 로고
    • Improving classifier performance through repeated sampling
    • Zhou J., Lopresti D. Improving classifier performance through repeated sampling. Pattern Recogn. 30(1):1997;1637-1650.
    • (1997) Pattern Recogn. , vol.30 , Issue.1 , pp. 1637-1650
    • Zhou, J.1    Lopresti, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.