메뉴 건너뛰기




Volumn 1, Issue , 2010, Pages 339-346

Evolution of optimal ANNs for non-linear control problems using Cartesian Genetic Programming

Author keywords

Artificial neural networks; Genetic Programming; Non linear control problems

Indexed keywords

BENCH-MARK PROBLEMS; CARTESIAN GENETIC PROGRAMMING; INITIAL STATE; NEURAL ARCHITECTURES; NON LINEAR CONTROL; NONLINEAR CONTROL PROBLEMS; POLE BALANCING; TASK ENVIRONMENT;

EID: 84866062894     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (25)
  • 4
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • G. Dorffner. Neural networks for time series processing. Neural Network World, 6(4):447-468, 1996.
    • (1996) Neural Network World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 5
    • 0028519259 scopus 로고
    • On using feedforward neural networks for clinical diagnostic tasks
    • G. Dorffner and G. Porenta. On using feedforward neural networks for clinical diagnostic tasks. Artificial Intelligence in Medicine, 6(5):417-435, 1994.
    • (1994) Artificial Intelligence in Medicine , vol.6 , Issue.5 , pp. 417-435
    • Dorffner, G.1    Porenta, G.2
  • 6
    • 0031287711 scopus 로고    scopus 로고
    • Incremental evolution of complex general behavior
    • F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive Behavior, 5:317-342, 1997.
    • (1997) Adaptive Behavior , vol.5 , pp. 317-342
    • Gomez, F.1    Miikkulainen, R.2
  • 8
    • 44649193889 scopus 로고    scopus 로고
    • Accelerated neural evolution through cooperatively coevolved synapses
    • F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res., 9:937-965, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 937-965
    • Gomez, F.1    Schmidhuber, J.2    Miikkulainen, R.3
  • 10
    • 84901411269 scopus 로고    scopus 로고
    • Neuroevolution for reinforcement learning using evolution strategies
    • June
    • C. Igel. Neuroevolution for reinforcement learning using evolution strategies. Congress on Evolutionary Computation, 4(2):2588 - 2595, June 2003.
    • (2003) Congress on Evolutionary Computation , vol.4 , Issue.2 , pp. 2588-2595
    • Igel, C.1
  • 14
    • 33645258729 scopus 로고    scopus 로고
    • Evolution of the topology and the weights of neural networks using genetic programming with a dual representation
    • The University of Birmingham, Birmingham B15 2TT, UK
    • J. C. F. Pujol and R. Poli. Evolution of the topology and the weights of neural networks using genetic programming with a dual representation. Technical Report CSRP-97-7, School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK, 1997.
    • (1997) Technical Report CSRP-97-7, School of Computer Science
    • Pujol, J.C.F.1    Poli, R.2
  • 20
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural network through augmenting topologies
    • K. O. Stanley and R. Miikkulainen. Evolving neural network through augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002.
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 25
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. In Proceedings of the IEEE, volume 87(9), pages 1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.