-
2
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
Balandin, A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569-581.
-
(2011)
Nat. Mater.
, vol.10
, pp. 569-581
-
-
Balandin, A.1
-
3
-
-
0242499391
-
Interfacial heat flow in carbon nanotube suspensions
-
Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M. S.; Siddons, G.; Shim, M.; et al. Interfacial Heat Flow in Carbon Nanotube Suspensions. Nat. Mater. 2003, 2, 731-734.
-
(2003)
Nat. Mater.
, vol.2
, pp. 731-734
-
-
Huxtable, S.T.1
Cahill, D.G.2
Shenogin, S.3
Xue, L.4
Ozisik, R.5
Barone, P.6
Usrey, M.7
Strano, M.S.8
Siddons, G.9
Shim, M.10
-
4
-
-
33745765642
-
Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates
-
Maune, H.; Chiu, H.-Y.; Bockrath, M. Thermal Resistance of the Nanoscale Constrictions between Carbon Nanotubes and Solid Substrates. Appl. Phys. Lett. 2006, 89, 013109
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 013109
-
-
Maune, H.1
Chiu, H.-Y.2
Bockrath, M.3
-
5
-
-
34248575328
-
Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
-
Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates. J. Appl. Phys. 2007, 101, 093710
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 093710
-
-
Pop, E.1
Mann, D.A.2
Goodson, K.E.3
Dai, H.4
-
6
-
-
59849101535
-
Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy
-
Tsen, A. W.; Donev, L. A. K.; Kurt, H.; Herman, L. H.; Park, J. Imaging the Electrical Conductance of Individual Carbon Nanotubes with Photothermal Current Microscopy. Nat. Nanotechnol. 2009, 4, 108-113.
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 108-113
-
-
Tsen, A.W.1
Donev, L.A.K.2
Kurt, H.3
Herman, L.H.4
Park, J.5
-
7
-
-
66549087961
-
Thermal probing of energy dissipation in current-carrying carbon nanotubes
-
Shi, L.; Zhou, J.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal Probing of Energy Dissipation in Current-Carrying Carbon Nanotubes. J. Appl. Phys. 2009, 105, 104306
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 104306
-
-
Shi, L.1
Zhou, J.2
Kim, P.3
Bachtold, A.4
Majumdar, A.5
McEuen, P.L.6
-
8
-
-
77955732789
-
Controlling the thermal contact resistance of a carbon nanotube heat spreader
-
Baloch, K. H.; Voskanian, N.; Cumings, J. Controlling the Thermal Contact Resistance of a Carbon Nanotube Heat Spreader. Appl. Phys. Lett. 2010, 97, 063105
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 063105
-
-
Baloch, K.H.1
Voskanian, N.2
Cumings, J.3
-
10
-
-
79960806187
-
Thermal boundary resistance between the end of an individual carbon nanotube and a au surface
-
Hirotani, J.; Ikuta, T.; Nishiyama, T.; Takahashi, K. Thermal Boundary Resistance between the End of an Individual Carbon Nanotube and a Au Surface. Nanotechnology 2011, 22, 315702
-
(2011)
Nanotechnology
, vol.22
, pp. 315702
-
-
Hirotani, J.1
Ikuta, T.2
Nishiyama, T.3
Takahashi, K.4
-
11
-
-
33645276531
-
Enhancement of thermal interface materials with carbon nanotube arrays
-
Xu, J.; Fisher, T. S. Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays. Int. J. Heat Mass Transfer 2006, 49, 1658-1666.
-
(2006)
Int. J. Heat Mass Transfer
, vol.49
, pp. 1658-1666
-
-
Xu, J.1
Fisher, T.S.2
-
12
-
-
33847677981
-
Increased real contact in thermal interfaces: A carbon nanotube/foil material
-
Cola, B. A.; Xu, X.; Fisher, T. S. Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material. Appl. Phys. Lett. 2007, 90, 093513
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 093513
-
-
Cola, B.A.1
Xu, X.2
Fisher, T.S.3
-
13
-
-
34247106303
-
Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials
-
Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials. IEEE Trans. Compon., Packag. Technol. 2007, 30, 92-100.
-
(2007)
IEEE Trans. Compon., Packag. Technol.
, vol.30
, pp. 92-100
-
-
Tong, T.1
Zhao, Y.2
Delzeit, L.3
Kashani, A.4
Meyyappan, M.5
Majumdar, A.6
-
14
-
-
44349157857
-
Thermal properties of metal-coated vertically aligned single-wall nanotube arrays
-
Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays. J. Heat Transfer 2008, 130, 052401
-
(2008)
J. Heat Transfer
, vol.130
, pp. 052401
-
-
Panzer, M.A.1
Zhang, G.2
Mann, D.3
Hu, X.4
Pop, E.5
Dai, H.6
Goodson, K.E.7
-
15
-
-
43249126744
-
Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling
-
Zhang, K.; Chai, Y.; Yuen, M. M. F.; Xiao, D. G. W.; Chan, P. C. H. Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling. Nanotechnology 2008, 19, 215706
-
(2008)
Nanotechnology
, vol.19
, pp. 215706
-
-
Zhang, K.1
Chai, Y.2
Yuen, M.M.F.3
Xiao, D.G.W.4
Chan, P.C.H.5
-
16
-
-
72849147562
-
Thermal boundary resistances of carbon nanotubes in contact with metals and polymers
-
Li, Q.; Liu, C.; Fan, S. Thermal Boundary Resistances of Carbon Nanotubes in Contact with Metals and Polymers. Nano Lett. 2009, 9, 3805-3809.
-
(2009)
Nano Lett.
, vol.9
, pp. 3805-3809
-
-
Li, Q.1
Liu, C.2
Fan, S.3
-
17
-
-
80051707459
-
Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate
-
Yang, J.; Yang, Y.; Waltermire, S. W.; Gutu, T.; Zinn, A. A.; Xu, T. T.; Chen, Y.; Li, D. Measurement of the Intrinsic Thermal Conductivity of a Multiwalled Carbon Nanotube and Its Contact Thermal Resistance with the Substrate. Small 2011, 7, 2334-2340.
-
(2011)
Small
, vol.7
, pp. 2334-2340
-
-
Yang, J.1
Yang, Y.2
Waltermire, S.W.3
Gutu, T.4
Zinn, A.A.5
Xu, T.T.6
Chen, Y.7
Li, D.8
-
18
-
-
55249110630
-
Interfacial thermal conductance between silicon and a vertical carbon nanotube
-
Hu, M.; Keblinski, P.; Wang, J.-S.; Raravikar, N. Interfacial Thermal Conductance between Silicon and a Vertical Carbon Nanotube. J. Appl. Phys. 2008, 104, 083503
-
(2008)
J. Appl. Phys.
, vol.104
, pp. 083503
-
-
Hu, M.1
Keblinski, P.2
Wang, J.-S.3
Raravikar, N.4
-
19
-
-
56349130781
-
Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices
-
Carlborg, C. F.; Shiomi, J.; Maruyama, S. Thermal Boundary Resistance between Single-Walled Carbon Nanotubes and Surrounding Matrices. Phys. Rev. B 2008, 78, 205406
-
(2008)
Phys. Rev. B
, vol.78
, pp. 205406
-
-
Carlborg, C.F.1
Shiomi, J.2
Maruyama, S.3
-
20
-
-
66449127883
-
An essential mechanism of heat dissipation in carbon nanotube electronics
-
Rotkin, S. V.; Perebeinos, V.; Petrov, A. G.; Avouris, P. An Essential Mechanism of Heat Dissipation in Carbon Nanotube Electronics. Nano Lett. 2009, 9, 1850-1855.
-
(2009)
Nano Lett.
, vol.9
, pp. 1850-1855
-
-
Rotkin, S.V.1
Perebeinos, V.2
Petrov, A.G.3
Avouris, P.4
-
21
-
-
65549131819
-
Contact mechanics and thermal conductance of carbon nanotube array interfaces
-
Cola, B. A.; Xu, J.; Fisher, T. S. Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces. Int. J. Heat Mass Transfer 2009, 52, 3490-3503.
-
(2009)
Int. J. Heat Mass Transfer
, vol.52
, pp. 3490-3503
-
-
Cola, B.A.1
Xu, J.2
Fisher, T.S.3
-
22
-
-
69149106714
-
The interfacial thermal conductance between a vertical single-wall carbon nanotube and a silicon substrate
-
Fan, H.-B.; Zhang, K.; Yuen, M. M. F. The Interfacial Thermal Conductance between a Vertical Single-Wall Carbon Nanotube and a Silicon Substrate. J. Appl. Phys. 2009, 106, 034307
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 034307
-
-
Fan, H.-B.1
Zhang, K.2
Yuen, M.M.F.3
-
24
-
-
84855316490
-
Interfacial thermal resistance between metallic carbon nanotube and cu substrate
-
Gao, F.; Qu, J.; Yao, M. Interfacial Thermal Resistance between Metallic Carbon Nanotube and Cu Substrate. J. Appl. Phys. 2011, 110, 124314
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 124314
-
-
Gao, F.1
Qu, J.2
Yao, M.3
-
25
-
-
0000316645
-
Theory of radiative heat transfer between closely spaced bodies
-
Polder, D.; Van Hove, M. Theory of Radiative Heat Transfer between Closely Spaced Bodies. Phys. Rev. B 1971, 4, 3303-3314.
-
(1971)
Phys. Rev. B
, vol.4
, pp. 3303-3314
-
-
Polder, D.1
Van Hove, M.2
-
26
-
-
18144381583
-
Heat transfer between two nanoparticles through near field interaction
-
Domingues, G.; Volz, S.; Joulain, K.; Greffet, J.-J. Heat Transfer between Two Nanoparticles through Near Field Interaction. Phys. Rev. Lett. 2005, 94, 085901
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 085901
-
-
Domingues, G.1
Volz, S.2
Joulain, K.3
Greffet, J.-J.4
-
27
-
-
17644371967
-
Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field
-
Joulain, K.; Mulet, J.-P.; Marquier, F.; Carminati, R.; Greffet, J.-J. Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field. Surf. Sci. Rep. 2005, 57, 59-112.
-
(2005)
Surf. Sci. Rep.
, vol.57
, pp. 59-112
-
-
Joulain, K.1
Mulet, J.-P.2
Marquier, F.3
Carminati, R.4
Greffet, J.-J.5
-
28
-
-
35548961448
-
Near-field radiative heat transfer and noncontact friction
-
Volokitin, A. I.; Persson, B. N. J. Near-Field Radiative Heat Transfer and Noncontact Friction. Rev. Mod. Phys. 2007, 79, 1291-1329.
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1291-1329
-
-
Volokitin, A.I.1
Persson, B.N.J.2
-
29
-
-
51749083899
-
Near-field radiative heat transfer between a sphere and a substrate
-
Narayanaswamy, A.; Shen, S.; Chen, G. Near-Field Radiative Heat Transfer between a Sphere and a Substrate. Phys. Rev. B 2008, 78, 115303
-
(2008)
Phys. Rev. B
, vol.78
, pp. 115303
-
-
Narayanaswamy, A.1
Shen, S.2
Chen, G.3
-
31
-
-
79953741082
-
The tunneling of heat
-
Mahan, G. D. The Tunneling of Heat. Appl. Phys. Lett. 2011, 98, 132106
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 132106
-
-
Mahan, G.D.1
-
32
-
-
69949168095
-
Radiative heat transfer at the nanoscale
-
Rousseau, E.; Siria, A.; Jourdan, G.; Volz, S.; Comin, F.; Chevrier, J.; Greffet, J.-J. Radiative Heat Transfer at the Nanoscale. Nat. Photonics 2009, 3, 514-517.
-
(2009)
Nat. Photonics
, vol.3
, pp. 514-517
-
-
Rousseau, E.1
Siria, A.2
Jourdan, G.3
Volz, S.4
Comin, F.5
Chevrier, J.6
Greffet, J.-J.7
-
33
-
-
68949086404
-
Surface phonon polaritons mediated energy transfer between nanoscale gaps
-
Shen, S.; Narayanaswamy, A.; Chen, G. Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps. Nano Lett. 2009, 9, 2909-2913.
-
(2009)
Nano Lett.
, vol.9
, pp. 2909-2913
-
-
Shen, S.1
Narayanaswamy, A.2
Chen, G.3
-
34
-
-
79961072811
-
Near-field radiative heat transfer between macroscopic planar surfaces
-
Ottens, R. S.; Quetschke, V.; Wise, S.; Alemi, A. A.; Lundock, R.; Mueller, G.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F. Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces. Phys. Rev. Lett. 2011, 107, 014301
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 014301
-
-
Ottens, R.S.1
Quetschke, V.2
Wise, S.3
Alemi, A.A.4
Lundock, R.5
Mueller, G.6
Reitze, D.H.7
Tanner, D.B.8
Whiting, B.F.9
-
36
-
-
80052410769
-
Temperature dependence of surface phonon polaritons from a quartz grating
-
Hafeli, A. K.; Rephaeli, E.; Fan, S.; Cahill, D. G.; Tiwald, T. E. Temperature Dependence of Surface Phonon Polaritons from a Quartz Grating. J. Appl. Phys. 2011, 110, 043517
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 043517
-
-
Hafeli, A.K.1
Rephaeli, E.2
Fan, S.3
Cahill, D.G.4
Tiwald, T.E.5
-
37
-
-
84864708560
-
Surface plasmons in neighboring SWNTs are very weakly electromagnetically coupled in our case with negligible change in plasmonic local density of states
-
Surface plasmons in neighboring SWNTs are very weakly electromagnetically coupled in our case with negligible change in plasmonic local density of states. The criterion for weak coupling was established in our previous work. 42
-
The Criterion for Weak Coupling Was Established in Our Previous Work.
, pp. 42
-
-
-
38
-
-
34250756559
-
Thermal energy exchange between carbon nanotube and air
-
Hu, M.; Shenogin, S.; Keblinski, P.; Raravikar, N. Thermal Energy Exchange between Carbon Nanotube and Air. Appl. Phys. Lett. 2007, 90, 231905
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 231905
-
-
Hu, M.1
Shenogin, S.2
Keblinski, P.3
Raravikar, N.4
-
39
-
-
80052402573
-
Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique
-
Hsu, I.-K.; Pettes, M. T.; Aykol, M.; Chang, C.-C.; Hung, W.-H.; Theiss, J.; Shi, L.; Cronin, S. B. Direct Observation of Heat Dissipation in Individual Suspended Carbon Nanotubes Using a Two-Laser Technique. J. Appl. Phys. 2011, 110, 044328
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 044328
-
-
Hsu, I.-K.1
Pettes, M.T.2
Aykol, M.3
Chang, C.-C.4
Hung, W.-H.5
Theiss, J.6
Shi, L.7
Cronin, S.B.8
-
40
-
-
35148844167
-
Thermal radiation from carbon nanotubes in the terahertz range
-
Nemilentsau, A. M.; Slepyan, G. Y.; Maksimenko, S. A. Thermal Radiation from Carbon Nanotubes in the Terahertz Range. Phys. Rev. Lett. 2007, 99, 147403
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 147403
-
-
Nemilentsau, A.M.1
Slepyan, G.Y.2
Maksimenko, S.A.3
-
41
-
-
78650924652
-
Spontaneous decay of the excited state of an emitter near a finite-length metallic carbon nanotube
-
Nemilentsau, A. M.; Slepyan, G. Y.; Maksimenko, S. A.; Lakhtakia, A.; Rotkin, S. V. Spontaneous Decay of the Excited State of an Emitter near a Finite-Length Metallic Carbon Nanotube. Phys. Rev. B 2010, 82, 235411
-
(2010)
Phys. Rev. B
, vol.82
, pp. 235411
-
-
Nemilentsau, A.M.1
Slepyan, G.Y.2
Maksimenko, S.A.3
Lakhtakia, A.4
Rotkin, S.V.5
-
42
-
-
80053208435
-
Spontaneous decay of an excited state of an emitter coupled to parallel SWNTs placed in the vicinity of a plane interface between two dielectric materials
-
Nemilentsau, A.; Slepyan, G.; Maksimenko, S.; Lakhtakia, A.; Rotkin, S. V. Spontaneous Decay of an Excited State of an Emitter Coupled to Parallel SWNTs Placed in the Vicinity of a Plane Interface between Two Dielectric Materials. Photonics Nanostruct. 2011, 9, 381-389.
-
(2011)
Photonics Nanostruct.
, vol.9
, pp. 381-389
-
-
Nemilentsau, A.1
Slepyan, G.2
Maksimenko, S.3
Lakhtakia, A.4
Rotkin, S.V.5
-
43
-
-
0001139094
-
Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation
-
Slepyan, G. Ya.; Maksimenko, S. A.; Lakhtakia, A.; Yevtushenko, O.; Gusakov, A. V. Electrodynamics of Carbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions, and Surface Wave Propagation. Phys. Rev. B 1999, 60, 17136-17149.
-
(1999)
Phys. Rev. B
, vol.60
, pp. 17136-17149
-
-
Slepyan, G.Y.1
Maksimenko, S.A.2
Lakhtakia, A.3
Yevtushenko, O.4
Gusakov, A.V.5
-
44
-
-
80053185003
-
Tutorial: Linear surface conductivity of an achiral single-wall carbon nanotube
-
Nemilentsau, A. M. Tutorial: Linear Surface Conductivity of an Achiral Single-Wall Carbon Nanotube. J. Nanophotonics 2011, 5, 050401
-
(2011)
J. Nanophotonics
, vol.5
, pp. 050401
-
-
Nemilentsau, A.M.1
-
45
-
-
36149013288
-
Infrared lattice bands of quartz
-
Spitzer, W. G.; Kleinman, D. A. Infrared Lattice Bands of Quartz. Phys. Rev. 1961, 121, 1324-1335.
-
(1961)
Phys. Rev.
, vol.121
, pp. 1324-1335
-
-
Spitzer, W.G.1
Kleinman, D.A.2
-
47
-
-
84864665281
-
-
Quartz dielectric function for the ordinary ray is used here. In general, the electromagnetic response is anisotropic in quartz. However, main conclusions of the simplified isotropic model are also valid for a general anisotropic case.
-
The Electromagnetic Response Is Anisotropic in Quartz
-
-
-
48
-
-
28744434816
-
Fundamental transmitting properties of carbon nanotube antennas
-
Hanson, G. Fundamental Transmitting Properties of Carbon Nanotube Antennas. IEEE Trans. Antennas Propag. 2005, 53, 3426-3435.
-
(2005)
IEEE Trans. Antennas Propag.
, vol.53
, pp. 3426-3435
-
-
Hanson, G.1
-
49
-
-
33646758590
-
Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas
-
Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Theory of Optical Scattering by Achiral Carbon Nanotubes and Their Potential as Optical Nanoantennas. Phys. Rev. B 2006, 73, 195416
-
(2006)
Phys. Rev. B
, vol.73
, pp. 195416
-
-
Slepyan, G.Y.1
Shuba, M.V.2
Maksimenko, S.A.3
Lakhtakia, A.4
-
50
-
-
0034894759
-
Radiative heat transfer between nanostructures
-
Volokitin, A. I.; Persson, B. N. J. Radiative Heat Transfer between Nanostructures. Phys. Rev. B 2001, 63, 205404
-
(2001)
Phys. Rev. B
, vol.63
, pp. 205404
-
-
Volokitin, A.I.1
Persson, B.N.J.2
-
51
-
-
84855919888
-
Asymptotic expressions describing radiative heat transfer between polar materials from the far-field regime to the nanoscale regime
-
Rousseau, E.; Laroche, M.; Greffet, J.-J. Asymptotic Expressions Describing Radiative Heat Transfer between Polar Materials from the Far-Field Regime to the Nanoscale Regime. J. Appl. Phys. 2012, 111, 014311
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 014311
-
-
Rousseau, E.1
Laroche, M.2
Greffet, J.-J.3
-
53
-
-
80455145059
-
Scattering of the near field of an electric dipole by a single-wall carbon nanotube
-
Nemilentsau, A. M.; Slepyan, G. Ya.; Maksimenko, S. A.; Lakhtakia, A.; Rotkin, S. V. Scattering of the Near Field of an Electric Dipole by a Single-Wall Carbon Nanotube. J. Nanophotonics 2010, 4, 041685.
-
(2010)
J. Nanophotonics
, vol.4
, pp. 041685
-
-
Nemilentsau, A.M.1
Slepyan, G.Y.2
Maksimenko, S.A.3
Lakhtakia, A.4
Rotkin, S.V.5
|