메뉴 건너뛰기




Volumn 6, Issue 5, 2012, Pages 4298-4304

Vertical single-wall carbon nanotube forests as plasmonic heat pipes

Author keywords

Interface thermal conductance; Kapitza conductance; Near field heat; Single wall nanotubes; Surface polariton

Indexed keywords

KAPITZA CONDUCTANCE; NEAR-FIELD; SINGLE WALL NANOTUBES; SURFACE POLARITONS; THERMAL CONDUCTANCE;

EID: 84864691861     PISSN: 19360851     EISSN: 1936086X     Source Type: Journal    
DOI: 10.1021/nn300848b     Document Type: Article
Times cited : (16)

References (53)
  • 2
    • 79960644631 scopus 로고    scopus 로고
    • Thermal properties of graphene and nanostructured carbon materials
    • Balandin, A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569-581.
    • (2011) Nat. Mater. , vol.10 , pp. 569-581
    • Balandin, A.1
  • 4
    • 33745765642 scopus 로고    scopus 로고
    • Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates
    • Maune, H.; Chiu, H.-Y.; Bockrath, M. Thermal Resistance of the Nanoscale Constrictions between Carbon Nanotubes and Solid Substrates. Appl. Phys. Lett. 2006, 89, 013109
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 013109
    • Maune, H.1    Chiu, H.-Y.2    Bockrath, M.3
  • 5
    • 34248575328 scopus 로고    scopus 로고
    • Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
    • Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates. J. Appl. Phys. 2007, 101, 093710
    • (2007) J. Appl. Phys. , vol.101 , pp. 093710
    • Pop, E.1    Mann, D.A.2    Goodson, K.E.3    Dai, H.4
  • 6
    • 59849101535 scopus 로고    scopus 로고
    • Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy
    • Tsen, A. W.; Donev, L. A. K.; Kurt, H.; Herman, L. H.; Park, J. Imaging the Electrical Conductance of Individual Carbon Nanotubes with Photothermal Current Microscopy. Nat. Nanotechnol. 2009, 4, 108-113.
    • (2009) Nat. Nanotechnol. , vol.4 , pp. 108-113
    • Tsen, A.W.1    Donev, L.A.K.2    Kurt, H.3    Herman, L.H.4    Park, J.5
  • 7
    • 66549087961 scopus 로고    scopus 로고
    • Thermal probing of energy dissipation in current-carrying carbon nanotubes
    • Shi, L.; Zhou, J.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal Probing of Energy Dissipation in Current-Carrying Carbon Nanotubes. J. Appl. Phys. 2009, 105, 104306
    • (2009) J. Appl. Phys. , vol.105 , pp. 104306
    • Shi, L.1    Zhou, J.2    Kim, P.3    Bachtold, A.4    Majumdar, A.5    McEuen, P.L.6
  • 8
    • 77955732789 scopus 로고    scopus 로고
    • Controlling the thermal contact resistance of a carbon nanotube heat spreader
    • Baloch, K. H.; Voskanian, N.; Cumings, J. Controlling the Thermal Contact Resistance of a Carbon Nanotube Heat Spreader. Appl. Phys. Lett. 2010, 97, 063105
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 063105
    • Baloch, K.H.1    Voskanian, N.2    Cumings, J.3
  • 10
    • 79960806187 scopus 로고    scopus 로고
    • Thermal boundary resistance between the end of an individual carbon nanotube and a au surface
    • Hirotani, J.; Ikuta, T.; Nishiyama, T.; Takahashi, K. Thermal Boundary Resistance between the End of an Individual Carbon Nanotube and a Au Surface. Nanotechnology 2011, 22, 315702
    • (2011) Nanotechnology , vol.22 , pp. 315702
    • Hirotani, J.1    Ikuta, T.2    Nishiyama, T.3    Takahashi, K.4
  • 11
    • 33645276531 scopus 로고    scopus 로고
    • Enhancement of thermal interface materials with carbon nanotube arrays
    • Xu, J.; Fisher, T. S. Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays. Int. J. Heat Mass Transfer 2006, 49, 1658-1666.
    • (2006) Int. J. Heat Mass Transfer , vol.49 , pp. 1658-1666
    • Xu, J.1    Fisher, T.S.2
  • 12
    • 33847677981 scopus 로고    scopus 로고
    • Increased real contact in thermal interfaces: A carbon nanotube/foil material
    • Cola, B. A.; Xu, X.; Fisher, T. S. Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material. Appl. Phys. Lett. 2007, 90, 093513
    • (2007) Appl. Phys. Lett. , vol.90 , pp. 093513
    • Cola, B.A.1    Xu, X.2    Fisher, T.S.3
  • 14
    • 44349157857 scopus 로고    scopus 로고
    • Thermal properties of metal-coated vertically aligned single-wall nanotube arrays
    • Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays. J. Heat Transfer 2008, 130, 052401
    • (2008) J. Heat Transfer , vol.130 , pp. 052401
    • Panzer, M.A.1    Zhang, G.2    Mann, D.3    Hu, X.4    Pop, E.5    Dai, H.6    Goodson, K.E.7
  • 15
    • 43249126744 scopus 로고    scopus 로고
    • Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling
    • Zhang, K.; Chai, Y.; Yuen, M. M. F.; Xiao, D. G. W.; Chan, P. C. H. Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling. Nanotechnology 2008, 19, 215706
    • (2008) Nanotechnology , vol.19 , pp. 215706
    • Zhang, K.1    Chai, Y.2    Yuen, M.M.F.3    Xiao, D.G.W.4    Chan, P.C.H.5
  • 16
    • 72849147562 scopus 로고    scopus 로고
    • Thermal boundary resistances of carbon nanotubes in contact with metals and polymers
    • Li, Q.; Liu, C.; Fan, S. Thermal Boundary Resistances of Carbon Nanotubes in Contact with Metals and Polymers. Nano Lett. 2009, 9, 3805-3809.
    • (2009) Nano Lett. , vol.9 , pp. 3805-3809
    • Li, Q.1    Liu, C.2    Fan, S.3
  • 17
    • 80051707459 scopus 로고    scopus 로고
    • Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate
    • Yang, J.; Yang, Y.; Waltermire, S. W.; Gutu, T.; Zinn, A. A.; Xu, T. T.; Chen, Y.; Li, D. Measurement of the Intrinsic Thermal Conductivity of a Multiwalled Carbon Nanotube and Its Contact Thermal Resistance with the Substrate. Small 2011, 7, 2334-2340.
    • (2011) Small , vol.7 , pp. 2334-2340
    • Yang, J.1    Yang, Y.2    Waltermire, S.W.3    Gutu, T.4    Zinn, A.A.5    Xu, T.T.6    Chen, Y.7    Li, D.8
  • 18
    • 55249110630 scopus 로고    scopus 로고
    • Interfacial thermal conductance between silicon and a vertical carbon nanotube
    • Hu, M.; Keblinski, P.; Wang, J.-S.; Raravikar, N. Interfacial Thermal Conductance between Silicon and a Vertical Carbon Nanotube. J. Appl. Phys. 2008, 104, 083503
    • (2008) J. Appl. Phys. , vol.104 , pp. 083503
    • Hu, M.1    Keblinski, P.2    Wang, J.-S.3    Raravikar, N.4
  • 19
    • 56349130781 scopus 로고    scopus 로고
    • Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices
    • Carlborg, C. F.; Shiomi, J.; Maruyama, S. Thermal Boundary Resistance between Single-Walled Carbon Nanotubes and Surrounding Matrices. Phys. Rev. B 2008, 78, 205406
    • (2008) Phys. Rev. B , vol.78 , pp. 205406
    • Carlborg, C.F.1    Shiomi, J.2    Maruyama, S.3
  • 20
    • 66449127883 scopus 로고    scopus 로고
    • An essential mechanism of heat dissipation in carbon nanotube electronics
    • Rotkin, S. V.; Perebeinos, V.; Petrov, A. G.; Avouris, P. An Essential Mechanism of Heat Dissipation in Carbon Nanotube Electronics. Nano Lett. 2009, 9, 1850-1855.
    • (2009) Nano Lett. , vol.9 , pp. 1850-1855
    • Rotkin, S.V.1    Perebeinos, V.2    Petrov, A.G.3    Avouris, P.4
  • 21
    • 65549131819 scopus 로고    scopus 로고
    • Contact mechanics and thermal conductance of carbon nanotube array interfaces
    • Cola, B. A.; Xu, J.; Fisher, T. S. Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces. Int. J. Heat Mass Transfer 2009, 52, 3490-3503.
    • (2009) Int. J. Heat Mass Transfer , vol.52 , pp. 3490-3503
    • Cola, B.A.1    Xu, J.2    Fisher, T.S.3
  • 22
    • 69149106714 scopus 로고    scopus 로고
    • The interfacial thermal conductance between a vertical single-wall carbon nanotube and a silicon substrate
    • Fan, H.-B.; Zhang, K.; Yuen, M. M. F. The Interfacial Thermal Conductance between a Vertical Single-Wall Carbon Nanotube and a Silicon Substrate. J. Appl. Phys. 2009, 106, 034307
    • (2009) J. Appl. Phys. , vol.106 , pp. 034307
    • Fan, H.-B.1    Zhang, K.2    Yuen, M.M.F.3
  • 24
    • 84855316490 scopus 로고    scopus 로고
    • Interfacial thermal resistance between metallic carbon nanotube and cu substrate
    • Gao, F.; Qu, J.; Yao, M. Interfacial Thermal Resistance between Metallic Carbon Nanotube and Cu Substrate. J. Appl. Phys. 2011, 110, 124314
    • (2011) J. Appl. Phys. , vol.110 , pp. 124314
    • Gao, F.1    Qu, J.2    Yao, M.3
  • 25
    • 0000316645 scopus 로고
    • Theory of radiative heat transfer between closely spaced bodies
    • Polder, D.; Van Hove, M. Theory of Radiative Heat Transfer between Closely Spaced Bodies. Phys. Rev. B 1971, 4, 3303-3314.
    • (1971) Phys. Rev. B , vol.4 , pp. 3303-3314
    • Polder, D.1    Van Hove, M.2
  • 26
    • 18144381583 scopus 로고    scopus 로고
    • Heat transfer between two nanoparticles through near field interaction
    • Domingues, G.; Volz, S.; Joulain, K.; Greffet, J.-J. Heat Transfer between Two Nanoparticles through Near Field Interaction. Phys. Rev. Lett. 2005, 94, 085901
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 085901
    • Domingues, G.1    Volz, S.2    Joulain, K.3    Greffet, J.-J.4
  • 27
    • 17644371967 scopus 로고    scopus 로고
    • Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field
    • Joulain, K.; Mulet, J.-P.; Marquier, F.; Carminati, R.; Greffet, J.-J. Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field. Surf. Sci. Rep. 2005, 57, 59-112.
    • (2005) Surf. Sci. Rep. , vol.57 , pp. 59-112
    • Joulain, K.1    Mulet, J.-P.2    Marquier, F.3    Carminati, R.4    Greffet, J.-J.5
  • 28
    • 35548961448 scopus 로고    scopus 로고
    • Near-field radiative heat transfer and noncontact friction
    • Volokitin, A. I.; Persson, B. N. J. Near-Field Radiative Heat Transfer and Noncontact Friction. Rev. Mod. Phys. 2007, 79, 1291-1329.
    • (2007) Rev. Mod. Phys. , vol.79 , pp. 1291-1329
    • Volokitin, A.I.1    Persson, B.N.J.2
  • 29
    • 51749083899 scopus 로고    scopus 로고
    • Near-field radiative heat transfer between a sphere and a substrate
    • Narayanaswamy, A.; Shen, S.; Chen, G. Near-Field Radiative Heat Transfer between a Sphere and a Substrate. Phys. Rev. B 2008, 78, 115303
    • (2008) Phys. Rev. B , vol.78 , pp. 115303
    • Narayanaswamy, A.1    Shen, S.2    Chen, G.3
  • 31
    • 79953741082 scopus 로고    scopus 로고
    • The tunneling of heat
    • Mahan, G. D. The Tunneling of Heat. Appl. Phys. Lett. 2011, 98, 132106
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 132106
    • Mahan, G.D.1
  • 33
    • 68949086404 scopus 로고    scopus 로고
    • Surface phonon polaritons mediated energy transfer between nanoscale gaps
    • Shen, S.; Narayanaswamy, A.; Chen, G. Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps. Nano Lett. 2009, 9, 2909-2913.
    • (2009) Nano Lett. , vol.9 , pp. 2909-2913
    • Shen, S.1    Narayanaswamy, A.2    Chen, G.3
  • 36
    • 80052410769 scopus 로고    scopus 로고
    • Temperature dependence of surface phonon polaritons from a quartz grating
    • Hafeli, A. K.; Rephaeli, E.; Fan, S.; Cahill, D. G.; Tiwald, T. E. Temperature Dependence of Surface Phonon Polaritons from a Quartz Grating. J. Appl. Phys. 2011, 110, 043517
    • (2011) J. Appl. Phys. , vol.110 , pp. 043517
    • Hafeli, A.K.1    Rephaeli, E.2    Fan, S.3    Cahill, D.G.4    Tiwald, T.E.5
  • 37
    • 84864708560 scopus 로고    scopus 로고
    • Surface plasmons in neighboring SWNTs are very weakly electromagnetically coupled in our case with negligible change in plasmonic local density of states
    • Surface plasmons in neighboring SWNTs are very weakly electromagnetically coupled in our case with negligible change in plasmonic local density of states. The criterion for weak coupling was established in our previous work. 42
    • The Criterion for Weak Coupling Was Established in Our Previous Work. , pp. 42
  • 38
  • 39
    • 80052402573 scopus 로고    scopus 로고
    • Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique
    • Hsu, I.-K.; Pettes, M. T.; Aykol, M.; Chang, C.-C.; Hung, W.-H.; Theiss, J.; Shi, L.; Cronin, S. B. Direct Observation of Heat Dissipation in Individual Suspended Carbon Nanotubes Using a Two-Laser Technique. J. Appl. Phys. 2011, 110, 044328
    • (2011) J. Appl. Phys. , vol.110 , pp. 044328
    • Hsu, I.-K.1    Pettes, M.T.2    Aykol, M.3    Chang, C.-C.4    Hung, W.-H.5    Theiss, J.6    Shi, L.7    Cronin, S.B.8
  • 40
    • 35148844167 scopus 로고    scopus 로고
    • Thermal radiation from carbon nanotubes in the terahertz range
    • Nemilentsau, A. M.; Slepyan, G. Y.; Maksimenko, S. A. Thermal Radiation from Carbon Nanotubes in the Terahertz Range. Phys. Rev. Lett. 2007, 99, 147403
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 147403
    • Nemilentsau, A.M.1    Slepyan, G.Y.2    Maksimenko, S.A.3
  • 41
    • 78650924652 scopus 로고    scopus 로고
    • Spontaneous decay of the excited state of an emitter near a finite-length metallic carbon nanotube
    • Nemilentsau, A. M.; Slepyan, G. Y.; Maksimenko, S. A.; Lakhtakia, A.; Rotkin, S. V. Spontaneous Decay of the Excited State of an Emitter near a Finite-Length Metallic Carbon Nanotube. Phys. Rev. B 2010, 82, 235411
    • (2010) Phys. Rev. B , vol.82 , pp. 235411
    • Nemilentsau, A.M.1    Slepyan, G.Y.2    Maksimenko, S.A.3    Lakhtakia, A.4    Rotkin, S.V.5
  • 42
    • 80053208435 scopus 로고    scopus 로고
    • Spontaneous decay of an excited state of an emitter coupled to parallel SWNTs placed in the vicinity of a plane interface between two dielectric materials
    • Nemilentsau, A.; Slepyan, G.; Maksimenko, S.; Lakhtakia, A.; Rotkin, S. V. Spontaneous Decay of an Excited State of an Emitter Coupled to Parallel SWNTs Placed in the Vicinity of a Plane Interface between Two Dielectric Materials. Photonics Nanostruct. 2011, 9, 381-389.
    • (2011) Photonics Nanostruct. , vol.9 , pp. 381-389
    • Nemilentsau, A.1    Slepyan, G.2    Maksimenko, S.3    Lakhtakia, A.4    Rotkin, S.V.5
  • 43
    • 0001139094 scopus 로고    scopus 로고
    • Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation
    • Slepyan, G. Ya.; Maksimenko, S. A.; Lakhtakia, A.; Yevtushenko, O.; Gusakov, A. V. Electrodynamics of Carbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions, and Surface Wave Propagation. Phys. Rev. B 1999, 60, 17136-17149.
    • (1999) Phys. Rev. B , vol.60 , pp. 17136-17149
    • Slepyan, G.Y.1    Maksimenko, S.A.2    Lakhtakia, A.3    Yevtushenko, O.4    Gusakov, A.V.5
  • 44
    • 80053185003 scopus 로고    scopus 로고
    • Tutorial: Linear surface conductivity of an achiral single-wall carbon nanotube
    • Nemilentsau, A. M. Tutorial: Linear Surface Conductivity of an Achiral Single-Wall Carbon Nanotube. J. Nanophotonics 2011, 5, 050401
    • (2011) J. Nanophotonics , vol.5 , pp. 050401
    • Nemilentsau, A.M.1
  • 45
    • 36149013288 scopus 로고
    • Infrared lattice bands of quartz
    • Spitzer, W. G.; Kleinman, D. A. Infrared Lattice Bands of Quartz. Phys. Rev. 1961, 121, 1324-1335.
    • (1961) Phys. Rev. , vol.121 , pp. 1324-1335
    • Spitzer, W.G.1    Kleinman, D.A.2
  • 47
    • 84864665281 scopus 로고    scopus 로고
    • Quartz dielectric function for the ordinary ray is used here. In general, the electromagnetic response is anisotropic in quartz. However, main conclusions of the simplified isotropic model are also valid for a general anisotropic case.
    • The Electromagnetic Response Is Anisotropic in Quartz
  • 48
    • 28744434816 scopus 로고    scopus 로고
    • Fundamental transmitting properties of carbon nanotube antennas
    • Hanson, G. Fundamental Transmitting Properties of Carbon Nanotube Antennas. IEEE Trans. Antennas Propag. 2005, 53, 3426-3435.
    • (2005) IEEE Trans. Antennas Propag. , vol.53 , pp. 3426-3435
    • Hanson, G.1
  • 49
    • 33646758590 scopus 로고    scopus 로고
    • Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas
    • Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Theory of Optical Scattering by Achiral Carbon Nanotubes and Their Potential as Optical Nanoantennas. Phys. Rev. B 2006, 73, 195416
    • (2006) Phys. Rev. B , vol.73 , pp. 195416
    • Slepyan, G.Y.1    Shuba, M.V.2    Maksimenko, S.A.3    Lakhtakia, A.4
  • 50
    • 0034894759 scopus 로고    scopus 로고
    • Radiative heat transfer between nanostructures
    • Volokitin, A. I.; Persson, B. N. J. Radiative Heat Transfer between Nanostructures. Phys. Rev. B 2001, 63, 205404
    • (2001) Phys. Rev. B , vol.63 , pp. 205404
    • Volokitin, A.I.1    Persson, B.N.J.2
  • 51
    • 84855919888 scopus 로고    scopus 로고
    • Asymptotic expressions describing radiative heat transfer between polar materials from the far-field regime to the nanoscale regime
    • Rousseau, E.; Laroche, M.; Greffet, J.-J. Asymptotic Expressions Describing Radiative Heat Transfer between Polar Materials from the Far-Field Regime to the Nanoscale Regime. J. Appl. Phys. 2012, 111, 014311
    • (2012) J. Appl. Phys. , vol.111 , pp. 014311
    • Rousseau, E.1    Laroche, M.2    Greffet, J.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.