메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 3708-3712

Zhang neural network versus gradient-based neural network for time-varying linear matrix equation solving

Author keywords

Global exponential convergence; Gradient based neural network; Linear matrix equation; Time varying; Zhang neural network

Indexed keywords

ENERGY FUNCTIONS; ERROR FUNCTION; GLOBAL EXPONENTIAL CONVERGENCE; GRADIENT BASED; IMPLICIT DYNAMICS; LINEAR MATRIX EQUATIONS; NOVEL DESIGN; THEORETICAL SOLUTIONS; TIME VARYING;

EID: 84864591960     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.05.021     Document Type: Article
Times cited : (67)

References (27)
  • 1
    • 26244448321 scopus 로고    scopus 로고
    • Gradient based iterative algorithms for solving a class of matrix equations
    • Ding F., Chen T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Transactions on Automatic Control 2005, 50(8):1216-1221.
    • (2005) IEEE Transactions on Automatic Control , vol.50 , Issue.8 , pp. 1216-1221
    • Ding, F.1    Chen, T.2
  • 2
    • 33749512783 scopus 로고    scopus 로고
    • Minimal residual methods augmented with eigenvectors for solving Sylvester equations and generalized Sylvester equations
    • Lin Y. Minimal residual methods augmented with eigenvectors for solving Sylvester equations and generalized Sylvester equations. Applied Mathematics and Computation 2006, 181(1):487-499.
    • (2006) Applied Mathematics and Computation , vol.181 , Issue.1 , pp. 487-499
    • Lin, Y.1
  • 3
    • 58349085402 scopus 로고    scopus 로고
    • A shift-splitting hierarchical identification method for solving Lyapunov matrix equations
    • Gu C., Xue H. A shift-splitting hierarchical identification method for solving Lyapunov matrix equations. Linear Algebra and its Applications 2009, 430(5-6):1517-1530.
    • (2009) Linear Algebra and its Applications , vol.430 , Issue.5-6 , pp. 1517-1530
    • Gu, C.1    Xue, H.2
  • 4
    • 77950368211 scopus 로고    scopus 로고
    • A functional approach to the Stein equation
    • Fuhrmann P.A. A functional approach to the Stein equation. Linear Algebra and its Applications 2010, 432(12):3031-3071.
    • (2010) Linear Algebra and its Applications , vol.432 , Issue.12 , pp. 3031-3071
    • Fuhrmann, P.A.1
  • 5
    • 0036738835 scopus 로고    scopus 로고
    • A recurrent neural network for solving Sylvester equation with time-varying coefficients
    • Zhang Y., Jiang D., Wang J. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Transactions on Neural Networks 2002, 13(5):1053-1063.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1053-1063
    • Zhang, Y.1    Jiang, D.2    Wang, J.3
  • 6
    • 0036565001 scopus 로고    scopus 로고
    • Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment
    • Zhang Y., Wang J. Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment. IEEE Transactions on Neural Networks 2002, 13(3):633-644.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 633-644
    • Zhang, Y.1    Wang, J.2
  • 7
    • 0033354129 scopus 로고    scopus 로고
    • An analysis of a class of neural networks for solving linear programming problems
    • Chong E.K.P., Hui S., zak S.H. An analysis of a class of neural networks for solving linear programming problems. IEEE Transactions on Automatic Control 1999, 44(11):1995-2006.
    • (1999) IEEE Transactions on Automatic Control , vol.44 , Issue.11 , pp. 1995-2006
    • Chong, E.K.P.1    Hui, S.2    zak, S.H.3
  • 8
    • 31144441548 scopus 로고    scopus 로고
    • Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process
    • Zhang Y., Leithead W.E. Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process. Applied Mathematics and Computation 2005, 171(2):1264-1281.
    • (2005) Applied Mathematics and Computation , vol.171 , Issue.2 , pp. 1264-1281
    • Zhang, Y.1    Leithead, W.E.2
  • 9
    • 28244493362 scopus 로고    scopus 로고
    • Design and analysis of a general recurrent neural network model for time-varying matrix inversion
    • Zhang Y., Ge S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Transactions on Neural Networks 2005, 16(6):1477-1490.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1477-1490
    • Zhang, Y.1    Ge, S.S.2
  • 11
    • 79959542082 scopus 로고    scopus 로고
    • Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse
    • Zhang Y., Yang Y., Tan N., Cai B. Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse. Computing 2011, 10.1007/s00607-010-0133-9.
    • (2011) Computing
    • Zhang, Y.1    Yang, Y.2    Tan, N.3    Cai, B.4
  • 12
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: a survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Transactions on Neural Networks 1995, 6(5):1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 13
    • 0031171305 scopus 로고    scopus 로고
    • Recurrent neural networks: a constructive algorithm, and its properties
    • Tsoi A.C., Tan S. Recurrent neural networks: a constructive algorithm, and its properties. Neurocomputing 1997, 15(3-4):309-326.
    • (1997) Neurocomputing , vol.15 , Issue.3-4 , pp. 309-326
    • Tsoi, A.C.1    Tan, S.2
  • 14
    • 0036138293 scopus 로고    scopus 로고
    • Hopfield neural networks for optimization: study of the different dynamics
    • Joya G., Atencia M.A., Sandoval F. Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 2002, 43(1-4):219-237.
    • (2002) Neurocomputing , vol.43 , Issue.1-4 , pp. 219-237
    • Joya, G.1    Atencia, M.A.2    Sandoval, F.3
  • 15
    • 79952763605 scopus 로고    scopus 로고
    • Nonlinear system identification using optimized dynamic neural network
    • Xie W.F., Zhu Y.Q., Zhao Z.Y., Wong Y.K. Nonlinear system identification using optimized dynamic neural network. Neurocomputing 2009, 72(13-15):3277-3287.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3277-3287
    • Xie, W.F.1    Zhu, Y.Q.2    Zhao, Z.Y.3    Wong, Y.K.4
  • 16
    • 38249001468 scopus 로고
    • A recurrent neural network for real-time matrix inversion
    • Wang J. A recurrent neural network for real-time matrix inversion. Applied Mathematics and Computation 1993, 55(1):89-100.
    • (1993) Applied Mathematics and Computation , vol.55 , Issue.1 , pp. 89-100
    • Wang, J.1
  • 17
    • 0023962627 scopus 로고
    • Symbolic matrix inversion with application to electronic circuits
    • Yeung K.S., Kumbi F. Symbolic matrix inversion with application to electronic circuits. IEEE Transactions on Circuits and Systems 1988, 35(2):235-238.
    • (1988) IEEE Transactions on Circuits and Systems , vol.35 , Issue.2 , pp. 235-238
    • Yeung, K.S.1    Kumbi, F.2
  • 19
    • 68949175443 scopus 로고    scopus 로고
    • Performance analysis of gradient neural network exploited for online time-varying matrix inversion
    • Zhang Y., Chen K., Tan H. Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Transactions on Automatic Control 2009, 54(8):1940-1945.
    • (2009) IEEE Transactions on Automatic Control , vol.54 , Issue.8 , pp. 1940-1945
    • Zhang, Y.1    Chen, K.2    Tan, H.3
  • 21
    • 28344446251 scopus 로고    scopus 로고
    • Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation
    • Maeda Y., Wakamura M. Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation. IEEE Transactions on Neural Networks 2005, 16(6):1664-1672.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1664-1672
    • Maeda, Y.1    Wakamura, M.2
  • 22
    • 79955513952 scopus 로고    scopus 로고
    • Improved Zhang neural network model and its solution of time-varying generalized linear matrix equations
    • Li Z., Zhang Y. Improved Zhang neural network model and its solution of time-varying generalized linear matrix equations. Expert Systems with Applications 2010, 37(10):7213-7218.
    • (2010) Expert Systems with Applications , vol.37 , Issue.10 , pp. 7213-7218
    • Li, Z.1    Zhang, Y.2
  • 23
    • 56549119541 scopus 로고    scopus 로고
    • Recurrent neural network model for computing largest and smallest generalized eigenvalue
    • Liu L., Shao H., Nan D. Recurrent neural network model for computing largest and smallest generalized eigenvalue. Neurocomputing 2008, 71(16-18):3589-3594.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3589-3594
    • Liu, L.1    Shao, H.2    Nan, D.3
  • 24
    • 0037379814 scopus 로고    scopus 로고
    • Digital hardware realization of a recurrent neural network for solving the assignment problem
    • Hung D.L., Wang J. Digital hardware realization of a recurrent neural network for solving the assignment problem. Neurocomputing 2003, 51:447-461.
    • (2003) Neurocomputing , vol.51 , pp. 447-461
    • Hung, D.L.1    Wang, J.2
  • 25
    • 61849089067 scopus 로고    scopus 로고
    • MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs
    • Zhang Y., Ma W., Li X.D., Tan H.Z., Chen K. MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs. Neurocomputing 2009, 72(7-9):1679-1687.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1679-1687
    • Zhang, Y.1    Ma, W.2    Li, X.D.3    Tan, H.Z.4    Chen, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.