메뉴 건너뛰기




Volumn 72, Issue 13-15, 2009, Pages 3277-3287

Nonlinear system identification using optimized dynamic neural network

Author keywords

Artificial neural network; Genetic algorithm; Nonlinear system identification; On line adaptation

Indexed keywords

DEEP NEURAL NETWORKS; ENCODING (SYMBOLS); GENETIC ALGORITHMS; MATRIX ALGEBRA; MEMORY ARCHITECTURE; NETWORK ARCHITECTURE; NEURAL NETWORKS; NONLINEAR SYSTEMS; RELIGIOUS BUILDINGS; TIME DELAY;

EID: 79952763605     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.02.004     Document Type: Article
Times cited : (39)

References (20)
  • 3
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean, The upstart algorithm: a method for constructing and training feedforward neural networks, Neural Computation 2 (1990) 198-209.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 5
    • 0025964567 scopus 로고
    • Back-propagation algorithm which varies the number of hidden units
    • Y. Hirose, K. Yamashita, S. Hijiya, Back-propagation algorithm which varies the number of hidden units, Neural Networks 4 (1991) 61-66.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 7
    • 0001008973 scopus 로고
    • Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithms
    • H. Kitano, Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms, Physica D 75 (1994) 225-228.
    • (1994) Physica D , vol.75 , pp. 225-228
    • Kitano, H.1
  • 12
    • 0242391006 scopus 로고    scopus 로고
    • Nonlinear system identification and model reduction using artificial neural networks
    • V. Prasad, B.W. Bequette, Nonlinear system identification and model reduction using artificial neural networks, Computers and Chemical Engineering 27 (2003) 1741-1754.
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 1741-1754
    • Prasad, V.1    Bequette, B.W.2
  • 13
    • 0027306480 scopus 로고
    • Hamiltonian dynamics of neural networks
    • U. Ramacher, Hamiltonian dynamics of neural networks, Neural Networks 6 (1993) 547-557.
    • (1993) Neural Networks , vol.6 , pp. 547-557
    • Ramacher, U.1
  • 14
    • 0027259956 scopus 로고
    • A polynomial time algorithm for the construction and training of a class of multilayer perceptrons
    • A. Roy, L.S. Kim, S. Mukhopadhyay, A polynomial time algorithm for the construction and training of a class of multilayer perceptrons, Neural Networks 6 (1993) 535-545.
    • (1993) Neural Networks , vol.6 , pp. 535-545
    • Roy, A.1    Kim, L.S.2    Mukhopadhyay, S.3
  • 16
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao, Evolving artificial neural networks, in: Proceedings of the IEEE, vol. 87, no. 7, 1999, pp. 1423-1447.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.7 , pp. 1423-1447
    • Yao, X.1
  • 17
    • 0036707312 scopus 로고    scopus 로고
    • Adaptive time delay neural network structures for nonlinear system identification
    • A. Yazdizadeh, K. Khorasani, Adaptive time delay neural network structures for nonlinear system identification, Neurocomputing 47 (2002) 207-240.
    • (2002) Neurocomputing , vol.47 , pp. 207-240
    • Yazdizadeh, A.1    Khorasani, K.2
  • 18
    • 0242523780 scopus 로고    scopus 로고
    • Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms
    • W. Yu, Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms, Information Sciences 158 (2004) 131-147.
    • (2004) Information Sciences , vol.158 , pp. 131-147
    • Yu, W.1
  • 19
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies, Evolutionary Computation 10 (2) (2002) 99-127.
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 20
    • 0037255171 scopus 로고    scopus 로고
    • The functional localization of neural networks using genetic algorithms
    • H. Tsukimoto, H. Hatano, The functional localization of neural networks using genetic algorithms, Neural Networks 56 (16) (2003) 55-67.
    • (2003) Neural Networks , vol.56 , Issue.16 , pp. 55-67
    • Tsukimoto, H.1    Hatano, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.