메뉴 건너뛰기




Volumn 27, Issue 3, 2012, Pages 531-550

Lazy lasso for local regression

Author keywords

l1 regularization; Lasso; Lazy lasso; Locally weighted regression; Loess; Nonparametric variable selection; Sparse models; Variable selection

Indexed keywords


EID: 84864388740     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-011-0274-0     Document Type: Article
Times cited : (10)

References (41)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16: 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 4
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74: 829-836.
    • (1979) J Am Stat Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 5
    • 84947318637 scopus 로고
    • Locally weighted regression: an approach to regression analysis by local fitting
    • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83: 596-610.
    • (1988) J Am Stat Assoc , vol.83 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 8
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is the sparsest solution
    • 1-norm solution is the sparsest solution. commun Pure Appl Math 59: 797-829.
    • (2006) Commun Pure Appl Math , vol.59 , pp. 797-829
    • Donoho, D.1
  • 10
    • 84950423285 scopus 로고
    • Design-adaptive nonparametric regression
    • Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87: 998-1004.
    • (1992) J Am Stat Assoc , vol.87 , pp. 998-1004
    • Fan, J.1
  • 11
    • 21144469140 scopus 로고
    • Variable bandwidth and local linear regression smoothers
    • Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20: 2008-2036.
    • (1992) Ann Stat , vol.20 , pp. 2008-2036
    • Fan, J.1    Gijbels, I.2
  • 14
    • 78651323070 scopus 로고    scopus 로고
    • Most-predictive design points for functional data predictors
    • Ferraty F, Hall P, Vieu P (2010) Most-predictive design points for functional data predictors. Biometrika 97: 807-824.
    • (2010) Biometrika , vol.97 , pp. 807-824
    • Ferraty, F.1    Hall, P.2    Vieu, P.3
  • 17
    • 0000999621 scopus 로고
    • Some diagnostics for binary logistic regression via smoothing
    • Fowlkes EB (1987) Some diagnostics for binary logistic regression via smoothing. Biometrika 74: 503-515.
    • (1987) Biometrika , vol.74 , pp. 503-515
    • Fowlkes, E.B.1
  • 19
    • 84972525897 scopus 로고
    • Local regression: automatic kernel carpentry
    • Hastie T, Loader C (1993) Local regression: automatic kernel carpentry. Stat Sci 8: 120-143.
    • (1993) Stat Sci , vol.8 , pp. 120-143
    • Hastie, T.1    Loader, C.2
  • 21
    • 84942484786 scopus 로고
    • Ridge regression: biased estimates for nonorthogonal problems
    • Hoerl A, Kennard R (1970) Ridge regression: biased estimates for nonorthogonal problems. Technometrics 12: 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 23
    • 21544439557 scopus 로고    scopus 로고
    • Statistical issues in the analysis of neuronal data
    • Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data. J Neurophysiol 94: 8-25.
    • (2005) J Neurophysiol , vol.94 , pp. 8-25
    • Kass, R.E.1    Ventura, V.2    Brown, E.N.3
  • 24
    • 38349019569 scopus 로고    scopus 로고
    • Robust linear model selection based on least angle regression
    • Khan JA, Aelst SV, Zamar RH (2007) Robust linear model selection based on least angle regression. J Am Stat Assoc 102: 1289-1299.
    • (2007) J Am Stat Assoc , vol.102 , pp. 1289-1299
    • Khan, J.A.1    Aelst, S.V.2    Zamar, R.H.3
  • 25
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight K, Fu W (2000) Asymptotics for lasso-type estimators. Ann Stat 28: 1356-1378.
    • (2000) Ann Stat , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 26
    • 50649123582 scopus 로고    scopus 로고
    • Rodeo: Sparse, greedy nonparametric regression
    • Lafferty J, Wasserman L (2008) Rodeo: Sparse, greedy nonparametric regression. Ann Stat 36: 28-63.
    • (2008) Ann Stat , vol.36 , pp. 28-63
    • Lafferty, J.1    Wasserman, L.2
  • 29
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with applications to microarray data analysis
    • Ma S, Song X, Huang J (2007) Supervised group lasso with applications to microarray data analysis. BMC Bioinformatics 8: 1-17.
    • (2007) BMC Bioinformatics , vol.8 , pp. 1-17
    • Ma, S.1    Song, X.2    Huang, J.3
  • 31
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen N, Yu B (2009) Lasso-type recovery of sparse representations for high-dimensional data. Ann Stat 37(1): 246-270.
    • (2009) Ann Stat , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 33
    • 21844518517 scopus 로고
    • Multivariate locally weighted least squares regression
    • Ruppert D, Wand M (1994) Multivariate locally weighted least squares regression. Ann Stat 22: 1346-1370.
    • (1994) Ann Stat , vol.22 , pp. 1346-1370
    • Ruppert, D.1    Wand, M.2
  • 35
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B 58: 267-288.
    • (1996) J R Stat Soc Series B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 66549116368 scopus 로고    scopus 로고
    • Shrinkage estimation of the varying coefficient model
    • Wang H, Xia Y (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104: 747-757.
    • (2009) J Am Stat Assoc , vol.104 , pp. 747-757
    • Wang, H.1    Xia, Y.2
  • 38
    • 66249126303 scopus 로고    scopus 로고
    • Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
    • Wheeler DC (2009) Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environ Plan A 41: 722-742.
    • (2009) Environ Plan A , vol.41 , pp. 722-742
    • Wheeler, D.C.1
  • 39
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao P, Yu B (2006) On model selection consistency of lasso. J Mach Learn Res 7: 2541-2567.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 40
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101: 1418-1429.
    • (2006) J Am Stat Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 41
    • 34548536008 scopus 로고    scopus 로고
    • On the degrees of freedom of the lasso
    • Zou H, Hastie T, Tibshirani R (2007) On the degrees of freedom of the lasso. Ann Stat 35: 2173-2192.
    • (2007) Ann Stat , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.